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Summary for publication 
 
In climate policy, decisions have to be taken sequentially, under uncertainty and based on imperfect 
data. Policy makers can control greenhouse gas emissions only indirectly through carbon taxes, 
emission rights trading schemes, etc. Credible policy advice therefore has to account for uncertainties, 
both about our understanding of how the climate system responds to anthropogenic forcing but also, 
and more importantly, about the capability of policy makers to effectively implement emissions 
reduction plans. 
 
Viable climate policies need to balance conflicting interests and be robust under deep uncertainty. 
Rationalising climate policies requires, among others, understanding and quantifying which climate 
decisions matter most, how uncertainties affect optimal decisions and how current decisions may 
shrink (or widen) the decision space of future generations. 
 
This deliverable reports on an ontology of climate science notions for tipping point research and on a 
domain-specific language (DSL)1 for policy advice under deep threshold uncertainty. The ontology and 
the domain-specific language have been designed to assist the specification and the verified solution 
of stylised climate decision problems. Applications of the ontology and of the DSL are discussed in 
related publications. 
 
In these applications, the DSL serves two main purposes. First, it clarifies and assigns meanings to 
notions which are used ambiguously in tipping point research. Second, it provides useful abstractions 
for specifying and solving decision problems under uncertainty. This is crucial for delivering 
accountable policies, that is, policies that are verified against their specification. 
 
The first purpose also motivates the development of the ontology. We have formalised and annotated 
the most compelling notions of climate sensitivity, commitment, abrupt change, tipping point, tipping 
element and early warning signal available in the literature. For some of these notions, we have 
discovered computational patterns similar to those presented in [Ion09] for the notion of vulnerability. 
 
With respect to the second purpose, we have developed an abstraction layer via DSL extensions of the 
framework for specifying and solving monadic sequential decision problems (SDPs) of Botta et al. 
[BIJ17]. The notion of monadic SDP can be understood as formalising a generic notion of sequential 
dynamics under uncertainty, which can be instantiated to recover concrete instances. Among others, 
the familiar ones: deterministic, non-deterministic, and stochastic dynamical systems, which all can 
be used to study and quantify the consequences of uncertainty.  
 
Specifically, we have extended the framework with generic measures of responsibility and with a DSL 
for transparently expressing goals of decision making. This allows to specify climate decision problems 
in terms of value judgments following ideas of planetary boundaries and safe operational spaces 
[Roc+09, Hei+16]. We have applied this DSL to obtain accountable measures of how much climate 
decisions under uncertainty matter. In this application we have also developed a method for encoding 
transition functions of stochastic decision problems in a modular way from Bayesian belief networks. 
  
A major contribution to optimal decision theory has emerged from the need to apply the Botta et al. 
framework to non-standard instances of monadic sequential decision problems studied within WP6. 
In this contribution, we have formulated sufficient and mutually independent conditions on 

 
1 Different from a general-purpose computer language, a domain-specific language (DSL) is specialized to a particular 
domain of application. In our case, the domain of application is that of climate science, focussing on notions that arise in 
the context of tipping point research and climate policy. 
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combinations of measures, monads and value aggregation functions for the framework's generic 
backwards induction to be correct. The proof of the result is implemented in the Idris computer 
language and machine checked. 
 
The main results achieved in this deliverable are 

• an ontological review and operational description of key notions of tipping point research 
(research report [BBCM22a]), 

• a DSL for monadic decision problems, responsibility under uncertainty and tipping point 
notions (research report [BBCM22b]), 

• a new correctness result for generic backward induction (publications [BB21, Bot+21a]) 

• a novel method for estimating how much climate decisions under uncertainty matter 
(submitted paper [Bot+21b]) 

 
 

Work carried out  
 
Details of work carried out 
 
The details of the work carried out for this deliverable have been assembled in two stand-alone reports 
that are attached as Appendix A and B to this document and are publicly available on Zenodo (see 
dissemination section [BBCM22a] and [BBCM22b]). Here we just outline the contents of these two 
reports.2 
 
Climate sensitivity, commitment and abrupt change: toward an ontology for climate TP research 
 
In the report [BBCM22a] (Appendix A) we review relevant notions in the context of tipping point (TP) 
research and sketch how to organise them in a prototype ontology. This is the first part of work task 
T6.1.1 and objective O6.1. Particular attention is given to the following notions:  
 

• different variants of climate sensitivity [KR17] (Appendix A, Section 4), 

• (climate change) commitment [Wig05] (Appendix A, Section 5), 

• abrupt change [All+03], tipping point and tipping element [Len+09] (Appendix A, Section 6), 

• early warning signal [Sch+09] (Appendix A, Section 7) 
  
We tackle these notions from the point of view of dynamical systems theory as originally proposed in 
[Ion09]3 and formalise climate sensitivity and commitment in terms of generic schemes that can be 
instantiated with the variants found in the literature. This shows that climate sensitivity and 
commitment are in fact closely related notions. 
  
For abrupt change, tipping point, tipping element and early warning signal, we review and annotate 
compelling definitions like for example that of [Len+09] (Appendix A, Section 6). For each notion, we 
present a list of selected papers and a bibliography. This allows to trace its respective historical 
development and the most relevant contributions. 
  

 
2 Concerning the dissemination of the results presented in the two reports see also below in “Main results achieved” and 
“How we are going to ensure the uptake of the deliverable by the targeted audience”. 
3 In this study, Ionescu uses functional programming inspired formal methods to clarify the notion of vulnerability and 
proposes a generic operational description that can be instantiated to different variants of the notion found in the 
literature. 
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At the end, we sketch a framework for organising the different notions and their relationships in a 
formal ontology. In this framework, important concepts like time series of observational data or 
dynamical systems and their trajectories arise as instances of generic notions of sequential data and 
sequential data producers. 

 
A DSL for Monadic Decision Problems, Responsibility under Uncertainty and Tipping Point Notions 
 
In the report [BBCM22b] (Appendix B) we describe the modifications and extensions that we have 
implemented as domain-specific language extensions in the IdrisLibs framework of [BIJ17]. This is the 
second part of work task T6.1.1 and objective O6.1. Based on the central notions of monadic decision 
process and monadic sequential decision problem (MSDP), in which the category-theoretical structure 
of a monad [Mac78, Wad92] captures a generic notion of uncertainty [Ion09, BIJ17] (for example non-
deterministic or stochastic uncertainty [Gir81, EK06]), we have decided to work with a lightweight 
version of the [BIJ17] theory in a trade-off between expressivity and user-friendliness.  
 
As a first step, we discuss what it means for solutions of MSDPs to be optimal and show under which 
conditions we can prove that the generic backward induction algorithm of the framework indeed 
computes optimal solutions (Appendix B, Section 4). With this we also address the question posed in 
the description of TiPES cross cutting Theme 4 of what it means for decisions to be optimal under 
unavoidable political uncertainty and imperfect information. This part of the work has led to the 
publications [Bot+21a] and [BB21].  
 
We furthermore describe the development of generic responsibility measures and a syntax for 
transparently describing the goals of decision making (Appendix B, Section 7, addressing work task 
T6.1.3 and objective O6.4). Their usage is illustrated with a stylised stochastic emission problem 
(Appendix B, Section 5). We also show how to modularly describe the transition function of the 
underlying decision process with conditional probabilities in the sense of Bayesian belief networks. 
This part of the report is based on the submitted paper [Bot+21b] but contains some simplifications 
and extensions. 
 
Given that the application of formal methods to climate science and to climate policy advice is far from 
mainstream approaches (which include integrated assessment modelling or standard scenario 
simulation), we have assembled some thoughts about “climate science and verified programming”, 
“climate science and climate policy” and “decision theory and climate policy” in three short notes 
[BBCM21a-c] which can be found in Appendix C-E. 
 
The main responsibility for the work carried out in the context of this deliverable was located at PIK. 
The UCL partner has provided advice and feedback concerning domain-specific notions, especially in 
the context of the ontological literature review. A novel notion of lost options commitment and the 
underlying climate model have been conceived by UCL in the context of deliverable D6.3 and the Idris 
formalisation has been carried out by PIK.  
 
Deviations from the DoA, difficulties in the implementation 
 
Already at the kick-off meeting in Paris in September 2019 it became clear that it would be difficult 
to adopt a consensual, clear-cut definition of the notion of “tipping point”. This situation did not 
perceivably change in the following. In general, assembling a prototype ontology of tipping point 
notions for T6.1.1 turned out to be much more time-consuming and challenging than expected. This 
was due to several different factors. First, we had to acknowledge that there is no consensual 
definition of tipping point in the literature. “Semantic confusion” around the notion of tipping point is 
widely acknowledged in the literature and, according to some [RN09, Rus15], the tipping point 
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metaphor can act as a rhetorical device, despite ambiguity of its technical meaning. Even within the 
TiPES consortium, an unambiguous definition of tipping point appeared to escape consensus.  
 
This situation was moreover complicated by the diverse backgrounds of the work package members, 
with the main responsibility for this deliverable located with the non-climate scientist members of 
WP6. Due to the COVID-19 pandemic, more extended “on-site” personal interactions between the 
work package members within WP6, but also with other work packages were made impossible. 
 
Despite these difficulties, the work carried out for this deliverable remains firmly anchored in the 
science surrounding tipping points, and consistent with work carried out in other work packages. 
Namely, the notions reviewed and formalised here will be used in deliverable D6.3, where problems 
are posed and solved with a climate model developed within the framework of WP6 (UCL partner). 
This model is called “SURFER” [Mar+22], it instantiates the notion of tipping point in ice dynamics and 
facilitates implementing the notions of “desirable” and “undesirable states”. 
 

 

Main results achieved  
 
The main results achieved with this deliverable consist, on the one hand, in an ontological review and 
operational description of certain key notions of tipping point research; on the other hand, in an 
extension of the Botta et al. IdrisLibs framework with several new domain-specific language elements 
for studying climate policy problems, in particular generic measures of responsibility, a syntax for 
expressing the goals of decision making transparently and operational definitions for studying 
commitment. They are essential first steps in providing an abstraction layer to narrow the gap 
between problem specification and implementation, and to allow for the use of formal verification to 
improve accountability. 
 
In the publications [Bot+21a] and [BB21] we report on the theoretical and technical foundations of 
the notion of optimality and method of optimization implemented in the framework.  
We consider that programs used for policy advice must be proved to provide correct solutions once 
the problem they are meant to solve is specified. This is a necessary condition for making the policy 
accountable. We thus derive sufficient conditions that allow us to ensure this kind of correctness for 
generic (monadic) backward induction as a solution method for monadic sequential decision 
problems. This is particularly relevant to ensure correctness when studying non-standard instances of 
sequential decision problems using measures of uncertainty not commonly used in control theory, 
e.g., motivated by the paradigm shift from cost-benefit to risk-opportunity analysis discussed in 
[Sha+21]. 
 
In the submitted paper [Bot+21b], we develop generic measures of responsibility (for sequential 
decision processes under uncertainty) and a small syntax for expressing the goals of decision making 
in a transparent and fair way. The proposed measures of responsibility are consistent with three 
conditions under which “a person can be ascribed responsibility for a given outcome” which have been 
put forward in the literature [BvH18]: avoidance, agency, and causal relevance. As a first application, 
this theory of responsibility under uncertainty has been applied to study the temporal evolution of 
responsibility in a highly stylised GHG emission decision problem. 
 
Not all results have already been disseminated in peer-reviewed publications or submitted 
manuscripts. This concerns primarily the content of the report [BBCM22a] (Appendix A) which 
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provides preliminary results for an ontology of operationalised key notions in the context of tipping 
point research which we plan to submit as a contribution to EarthArxiv (open source).  
Other (though minor) results that have not yet been published are reported in [BBCM22b] (Appendix 
B). These are extensions of the IdrisLibs framework that prepare the theoretical underpinnings for 
upcoming work contributing to TiPES D6.3 (see [BBCM22b, Section 3]) and for future work building on 
the ideas presented in [Bot+21b] (see [BBCM22b, Sections 5-7]).  
 

Progress beyond the state of the art 
 
While climate models can, up to a certain extent, be validated on the basis of indirect observations of 
past climates (palaeoclimatology) and of a growing amount of direct observations, and the 
(conditional) probabilities of different climate change scenarios (for given anthropogenic forcings) can 
be estimated, there is no consensual approach for assessing the effects of climate change on societies 
and for reliably estimating the feedback of climate change on anthropogenic forcing. 
 
Because of this asymmetry, climate science has been so far incapable of providing advice on matters 
of climate policy that is accountable: decision makers do not precisely know what kind of guarantees 
they can expect from implementing the advice received. 
 
State of the art Integrated assessment models (IAMs) of climate change of the kind discussed in 
[Nor18] have been widely applied to inform decision making but they have also been criticised, mainly 
because of three reasons: 1) their lack of predictive capability; 2) their reliance on cost-benefit analysis 
and marginality assumptions and 3) their focus on deterministic sequential decision problems. 
 
Another important aspect which has not been satisfactorily addressed by state of the art approaches 
is that of responsibility, and one of the objectives of TiPES WP6 was indeed to "Develop and apply 
influence and responsibility measures for accountable decision making (O4)". 
  
While notions of ex-post responsibility are crucial for the attribution of liabilities, e.g., for past GHG 
emissions, planning in matters of climate policy needs to be informed by ex-ante measures of how 
much decisions matter. 
  
We know that climate decisions which are taken (or delayed) now and in the next decades, e.g., on 
greenhouse gas (GHG) emissions, will be crucial for the upcoming generations. But do current 
decisions matter more or less than decisions to be taken in, say, one or two decades? Can an agent be 
held responsible for (performing or for failing to perform) actions that matter very little? And what 
does it precisely mean “to matter”, for decisions that are taken under deep uncertainty and imperfect 
information? 
 
The work reported in this deliverable goes beyond the state of the art in the following ways: 
 

• The ontology and the DSL are directed towards applying formal methods to the specification 
and solution4 of decision problems under deep uncertainty. We consider that this is an 
essential contribution. It can facilitate and clarify the dialog with policymakers, and we argue 
it could substantially enhance the legal foundations related to the climate agreements. 
Indeed, the work is a step towards reaching a new level of accountability: thanks to the 
underlying foundation of Dependent Type Theory, the results computed within our 
framework are machine-checked to be logical consequences of the assumptions made. This 

 
4 notably, by employing a computer-verified algorithm 

https://eartharxiv.org/
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allows for a much higher degree of confidence in the correctness of results than can be 
obtained with conventional programming languages. 

• Being built around a generic notion of sequential decision problems under uncertainty, our 
theory is much more flexible and re-usable for different combinations of uncertainty, 
measures, and utility functions than the common state of the art approaches to cost-benefit 
analysis. 

• Backward induction [Bel1957] is the go-to efficient method for solving sequential decision 
problems. With the formulation of correctness conditions for the generalised monadic 
backward induction we provide reasonably simple criteria for when this method can be used 
for efficiently solving sequential decision problems involving non-standard combinations of 
uncertainties, measures and value structures (which is crucial when moving from classical 
cost-benefit to a more informative risk-opportunity analysis paradigm has been recently 
advocated e.g., by [Sha+21]). To our knowledge these criteria had not been formulated in this 
generality before and our correctness theorem is a genuinely new theoretical result, of which 
we in addition provide a formalised and machine-checked proof. It should be noted that not 
only the optimization algorithm of backward induction is interesting as efficient algorithm, but 
also its underlying value function which provides an efficient method for assessing the utility 
of a given policy sequence or scenario. The conditions formulated in our result for the 
applicability of monadic backward induction also apply for the applicability of the efficient 
value function. 

• We propose a novel method for estimating how much decisions matter under monadic 
uncertainty. This method is generic and suitable for measuring responsibility in finite horizon 
sequential decision problems with monadic uncertainty. It fulfils fairness requirements and 
three natural conditions for responsibility measures (agency, avoidance and causal relevance) 
that have been formulated in the literature as requirements on responsibility measures. 

 
Besides the technical challenges, this research programme is also ambitious because the methods and 
mathematical approaches followed here are not standard in climate science. This generates a context 
prone to communication challenges, misunderstanding, and perhaps controversies about methods. 
Specifically, we have followed the rationale that taking good decisions in presence of uncertainty 
requires transparency of assumptions and simple, understandable models. Yet, the reality is complex, 
and climate scientists are inclined to use large simulators which defy human comprehension. We have 
maintained that in this context, simple models, with transparent and simple assumptions (but 
calibrated on more complex models) are better suited for accountable decision making, because the 
related assumptions can more easily be enumerated and agreed upon on the basis of expert guidance. 
Our work has been entirely guided by these principles. 

 
 

Impact 
 
The work reported in this deliverable contributes to the expected impacts of TiPES of “providing 
added-value to decision and policy makers” with 
 

• a framework for decision making which allows to systematically account for imperfect 
information, for uncertainty about a decision’s outcome and even its effective implementation in 
the first place. Such uncertainties are unavoidable in decision making in the context of climate 
science, e.g., coming from uncertainty about the climate system itself, economical and societal 
issues; 

• a language for climate scientists and policy experts that allows making the assumptions behind 
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policy advice transparent, and 

• a methodology for decision making and attribution of responsibility under uncertainty and 
imperfect information. 

 

Although the current impact of this work, if measured today by audience and citations, may be limited, 
we consider that it poses the foundations for a paradigm shift. To show this, we draw the reader’s 
attention to current difficulties and even controversies related to the validity of mainstream 
approaches for assisting decision making. Current cost-benefit approaches based on integrated 
assessment models -- widely based on a neo-classical economic paradigm -- have important problems:  
 

• they fail to address the long-term legacy of current decisions (the reward of future states is 
typically discounted); 

• models are complex, thus hard to comprehend (integrated assessment models contain many 
parameters and assumptions), and 

•  defining “optimal decisions” depends on arbitrarily weighing distinct and potentially conflicting 
value judgements about different aspects of climate change and climate intervention. In formal 
terms, fixing prices is problematic.  

 

Hence, we pose the diagnostic that minimising the cost predicted by integrated assessment models is 

unlikely to guide the policymaker towards decisions that are accountable and well understood. This 

diagnostic was shared and stressed by most participants of the virtual workshop “Challenges and new 

directions in risk analysis, decision making and policy advice for climate change” organised by WP6 

(see below). The audience success of this workshop is a sign of the importance and potential impact 

of the work carried out under WP6.  

 

The ontology, DSL and monadic framework provide healthy bases for tackling the difficulties 

enumerated above. This will become evident in the work carried out under D6.3 which will, for 

example, implement and use the notion of commitment. 

 

Lessons learned and links built 
 

Lessons learned 
 
Optimal decision making about climate change is not an ordinary optimal decision problem, because 
of the long-term legacy of current decisions, the values at stake, uncertainties, semantic ambiguities, 
and the complex ethical context. We certainly have a better appreciation of these difficulties than we 
had two years ago.  
 
We have however been comforted in our approach to use simple models with transparent 
assumptions. We have clarified that advising decision making requires more than a dynamical system 
framework. The dynamical system needs to be complemented by a set of controls, a value structure, 
and an explicit specification of uncertainties. On this basis, we have learned how to specify a 
responsibility measure and how to implement it in a computer language with computer-checked 
proofs of the results obtained.  
 
Developing the ontology and the DSL have been time consuming tasks, in fact more than anticipated. 
But they have convinced us that it is enlightening to have at hand a consistent, well thought-out 
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algebraic structure linking notions around decision making, climate change and tipping point. It allows 
us to link different definitions or problems as particular cases of a general framework. It also helped 
us to frame policy problems that at least partly address the difficulties emerging from the long-term 
legacy of decisions, the conflict of values and the complexity of models. This, we hope, will appear 
clearer in the following developments of the project.  
 
Furthermore, the interdisciplinary context associating two physicists (UCL partner), a computer 
scientist and an engineer has generated a fruitful context and created opportunities for articles not 
originally planned, such as [Bot+21a] and [BB21]. 
 
 
Links built 
 

• This deliverable is strongly linked to the other deliverables of WP6: The work on the 
correctness of monadic backward induction was inspired from discussions in the context of 
D6.1, and it provides a robust base of unambiguously defined notions for the work carried out 
towards D6.3 and D6.4. 

• Resulting from a discussion during the TiPES M18 General Assembly, the note on “Decision 
theory and climate policy” [BBCM21c] (Appendix E) was written as potential contribution in 
the context of WP7’s deliverable D7.2. 

• To promote the use of formal methods and foster discussion among TiPES members, we 
circulated a note on “Climate science and verified programming” [BBCM21a] on the TiPES 
mailing list.  

• We organised the following workshops (both in association with this deliverable and the 
forthcoming deliverable D6,3) that stimulated interesting discussions: 

o A virtual TiPES crosscutting Theme 4 workshop with invited speakers Claudia Wieners 
(Utrecht University) and our external partner Patrik Jansson (Chalmers IoT). This 
workshop led to subsequent interactions with Claudia Wieners and hopefully more 
cooperation in the future. 

o A 1-week virtual internal WP6 workshop with attendance of our external partners 
Patrik Jansson and Cezar Ionescu (TH Deggendorf). 

o A thematically broader virtual workshop “Challenges and new directions in risk 
analysis, decision making and policy advice for climate change” with invited speakers 
Simon Sharpe (University College London, IIPP), Steve Keen (University College 
London, ISRS), Ted Shepherd (University of Reading) and Thomas Stocker (University 
of Bern, OCCR, and lead of TiPES WP7). The workshop was very well received and 
sparked lively side discussions not only during the discussion session, but also in the 
Zoom chat during all of the workshop. Hopefully, these discussions will be continued 
in presence at the conference on Tipping Points that will be organised in September 
2022 by our TiPES partners at the University of Exeter. 

• We had frequent online meetings with our external partners and co-authors Patrik Jansson 
and Cezar Ionescu, and with our co-authors Tim Richter (University of Potsdam) and Zheng Li 
(Northeastern University & Arima Inc.). These interactions resulted in the joint papers 
[Bot+21a] and [Bot+21b]. 

 

• Some of the ideas developed in Appendix B [BBCM22b] are currently applied in a collaboration 
between Nicola Botta (PIK, TiPES WP6), Patrik Jansson and Nick Smallbone (CSE, Chalmers) 
and the Plasma Theory group at Chalmers University of Technology on the mitigation of 
runaway currents in tokamak fusion devices. 
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Relations to the TiPES crosscutting themes 
 
Of the themes indicated in the Description of the Action, part B, Section 1.1, this deliverable 
contributes to  
 
Theme 1. Tipping Elements in data and models: 

 

We reviewed definitions of the notions tipping point, tipping element and abrupt change to be found 
in the literature as basis for possible later formalization. This review is Section 6 of the report attached 
to this document as Appendix A.  

 

Theme 2. Climate response and Early Warning Signals: 

 

We reviewed definitions of different notions of climate sensitivity, climate change commitment and 
early warning signals to be found in the literature as basis for possible later formalization. For climate 
sensitivity and climate change commitment we moreover proposed generic operational descriptions. 
This work can be found in Sections 4, 5 and 7 of the report attached to this document as Appendix A. 

 
Theme 4. Data and decisions: 

 
In climate policy, decisions have to be taken sequentially, under strong political uncertainty and on 
the basis of imperfect data. As the recent pandemic and the more actual energy crisis make clear, this 
typically implies compromising between conflicting interests, often trading ideal solutions for viable 
ones, and trying to avoid the worst. Under these conditions it becomes crucial to be able to 1) to 
precisely formulate the goals of decision making and 2) to assess how much specific decisions matter 
for achieving these goals. The work carried out for this deliverable addresses these issues and provides 
dependable solutions. For example, in [Bot+21b] (reported in Appendix B, [BBCM22b]) by developing 
a new methodology for assessing how much decisions under uncertainty matter. 
 

Contribution to the top-level objectives of TiPES 
 
Of the objectives and specific goals indicated in the Description of the Action, part B, Section 1.1, this 
deliverable contributes to 
 
Objective 5-Bridge the gap between climate science and policy advice 

 

It contributes to Specific Objective 5.1. by reviewing definitions in the literature of key tipping point 
notions (Appendix A) and developing a domain specific language providing unambiguous meaning to 
the notions used for decision making under uncertainty (Appendix B). 
 

It contributes to Specific Objective 5.2. by adding to the understanding of the impact of generic 
uncertainty on the mathematical problem of computing optimal policy sequences with the result 
reported in Appendix B, Section 4. 
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Uptake by the targeted audiences 
 

As indicated in the Description of the Action, the audience for this deliverable is:  

X The general public (PU) is and is made available to the world via CORDIS. 

 The project partners, including the Commission services (PP) 

 A group specified by the consortium, including the Commission services (RE) 

 
This report is confidential, only for members of the consortium, including the 
Commission services (CO) 

 
How we are going to ensure the uptake of the deliverables by the targeted audiences 
 
All the material presented in this deliverable is public, but the content is directed towards a scientific 
audience.  
 
An important part of this deliverable, reported in Appendix B, has already been published in peer-
reviewed journals or is currently under revision (papers [Bot+21a, Bot+21b, BB21]). 
 
The work reported in Appendix A provides preliminary results for an ontology of operationalised key 
notions in the context of tipping point research and we plan to submit it as a contribution to EarthArxiv 
(open source) and advertise it through social media. 
 
Since we are aware that the application of formal methods in climate science in general and to 
climate policy advice in particular is far from mainstream approaches, such as integrated assessment 
modelling or standard scenario simulation, we have assembled some thoughts about “climate 
science and verified programming”, “climate science and climate policy” and “decision theory and 
climate policy” in three short notes [BBCM21a-c], reported in Appendices C-E. These notes are 
intended to improve the visibility and understanding of the approach in the community. They have 
been made publicly available ([BBCM21a-c] on Zenodo and [BBCM21b] also on EarthArXiv), and have 
been announced on the TiPES Twitter account.  The note [BBCM21c] was originally prepared for 
internal communication with TiPES WP7, and [BBCM21a, BBCM21b] have been circulated among 
external collaborators and on the TiPES mailing list. They have also been shared with the project 
managers of the tipping point related EU Horizon 2020 projects TiPACCS and COMFORT. 
  
We have made all work reported in this deliverable publicly available on Zenodo or via other visible 
online platforms. This holds even for the source code from which the three papers [Bot+21a, Bot+21b, 
BB21] and the report [BBCM22b] in Appendix B have been created. Moreover, as a distinctive feature 
providing a high degree of trustworthiness, the formal mathematical content of these sources can be 
machine-checked for correctness by any interested member of the audience. 
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Climate sensitivity, commitment and abrupt change: toward

an ontology for climate tipping point research

Nuria Brede1,2, Nicola Botta1,3, Michel Crucifix4, and Marina Mart́ınez Montero4

1RD4: Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany
2Department of Computer Science, University of Potsdam, Potsdam, Germany

3Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden
4Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium

{nuria.brede,botta}@pik-potsdam.de, {michel.crucifix,marina.martinez}@uclouvain.be

Abstract

We review a number of notions in tipping point research that have been studied within work
package 6 of the TiPES project and sketch how to organise them in a prototype ontology. For
climate sensitivity and climate change commitment, we propose an operational semantics by
giving their generic computational structure.
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1 Introduction

This short report is concerned with selected notions that are relevant in the context of tipping point
research as conducted within the EU Horizon 2020 project TiPES (Tipping Points in the E

¯
arth

System) [23]. The focus lies on the following notions:

• Climate Sensitivity (Section 4)

• Commitment (Section 5)

• Abrupt climate change, Tipping Point (TP) and Tipping element (TE) (Section 6)

• Early Warning Signal (EWS) (Section 7)

To explore these notions, we proceed as follows: We briefly give some general context (Section 2)
and introduce a few abstract language elements to facilitate talking about models, simulations and
data (Section 3). For each notion (Sections 4–7) we give a brief overview as introduction and
collect (possibly informal) definitions and classification information that may be used as semantic
annotation. We also assemble references for further reading that allow to follow the development
of the notion in question. For climate sensitivity and commitment experiments, we suggest generic
computational schemes of which these experiments are instances, following the approach of [Ion09;
Ion16]. Our main motivation is ontological: How are the notions defined and used in the literature?
What is their computational structure, which input and output types do they have, which physical
dimensions (if applicable) and how are they related to other notions? In Section 8 we sketch an
abstract perspective that may help to organise tipping point notions in the style of an ontology.

Figure 1: TiPES work package topics

Remarks: The report is part of Deliverable 6.2 of TiPESWP6. In the context of WP6’s objectives,
it is meant to serve as preparation of a domain specific language (DSL) with tipping point notions.
This DSL is to be implemented as extension of the IdrisLibs framework for the study of sequential
decision problems [Bot21].1

1The framework is implemented in Idris, a dependently typed programming language that allows to specify,
implement and prove properties of programs all in one language.
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The choice of the notions discussed in this report is guided by the topics studied in TiPES WP1–5
(see Fig.1 and cf. Appendix II for reference). We include pointers in text passages that relate to these
work packages’ objectives (e.g. concerning the classical notion of equilibrium climate sensitivity).
Parts of this work might also be understood as an elaboration of some entries of the Intergovernmen-
tal Panel on Climate Change (IPCC ) glossary (its most recent version can be found in Appendix
VII of the AR6 WGI report [Mas+21; Mat+21]) without the ambition of achieving the generality
of the relevant chapters of the IPCC assessment reports. For reference, we have included a number
of glossary entries which concern our notions of interest in Appendix I. Other general sources we
found helpful in the preparation of this document are course materials/resulting textbooks [Goo+10;
Goo15; Sto11] and the recent overview paper [GL20].

2 Preliminaries

Central notions underlying everything we will be discussing subsequently are those of climate system
and Earth system.

2.1 Climate and Earth system

First of all: what is a system? Wikipedia tells us that

“A system is a group of interacting or interrelated elements that act according to a
set of rules to form a unified whole. [Mer] A system, surrounded and influenced by its
environment, is described by its boundaries, structure and purpose and expressed in its
functioning. Systems are the subjects of study of systems theory.” (citation adapted)

and

”In engineering and physics, a physical system is the portion of the universe that is being
studied (of which a thermodynamic system is one major example). ”

and also

“Systems theory views the world as a complex system of interconnected parts. One
scopes a system by defining its boundary; this means choosing which entities are inside
the system and which are outside—part of the environment. One can make simplified
representations (models) of the system in order to understand it and to predict or impact
its future behavior. These models may define the structure and behavior of the system.”

The TiPES project is concerned with tipping elements in the Earth System of which the climate
system forms a subsystem. The climate system consists itself of five major subsystems, namely the
atmosphere, hydrosphere, cryosphere, lithosphere and biosphere. The notion of Earth system in
the context of Earth System Science [Com86; Com88; Mos06] is broader and in particular includes
human societies as subsystems. The notions discussed in this document mostly have emerged from
the study of the climate system, and the influence of human societies is usually considered as external
forcing applied to the system, e.g. via anthropogenic CO2 emissions. However, in Section 6 we will
e.g. encounter the notion of policy-relevant tipping element which explicitly includes human value
judgements and seeks to encompass tipping behaviour beyond bio-physical processes.
The IPCC glossary does not give a definition of Earth System, but a definition of Climate System.

IPCC Glossary: Climate system

The global system consisting of five major components: the atmosphere, the hydrosphere, the cryosphere,
the lithosphere and the biosphere and the interactions between them. The climate system changes in
time under the influence of its own internal dynamics and because of external forcings such as volcanic
eruptions, solar variations, orbital forcing, and anthropogenic forcings such as the changing composition
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of the atmosphere and land-use change.

The IPCC considers the climate system as a dynamical system:

IPCC Glossary: Dynamical system

A process or set of processes whose evolution in time is governed by a set of deterministic physical laws.
The climate system is a dynamical system.

Ghil and Lucarini begin their paper on the physics of climate change [GL20] with the statement:

“The climate system is forced, dissipative, chaotic, and out of equilibrium; its complex
natural variability arises from the interplay of positive and negative feedbacks, instabil-
ities, and saturation mechanisms.”

and later:

“A key goal of climate modelling is to capture the system’s statistical properties, i.e., its
mean state and its variability, and its response to forcings of a different nature.”

Accordingly, most of the notions we will discuss in this report are closely linked to studying the
climate system as a dynamical system and its response to interventions of some form.
Because of the complexity of this system and the very limited possibility/ quasi impossibility to
study it via systematic and repeatable empirical experiments, the main methodologies are based
on physical theories and numerical simulations with models. There is a whole hierarchy of models,
ranging from simple conceptual to complex global or regional models.
The study via models and model simulations is complemented with the analysis of data in the form
of time series. The data either comes from the instrumental record 2 or from historical proxies. The
outcome of assessments of climate system properties depends on the model and/or data used, and
on additional assumptions that are made to fill gaps in the knowledge or simplifications necessary
for computational feasibility.
Data sources can be classified according to the time scales for which they provide information. A
rough orientation following Fig. 2 of [KR15]:

Timescales and different kinds of data

• Observations: years to decades

• GCM simulations: years to centuries (few to couple thousands of years)

• Paleo proxies: decades to hundreds of millions of years

Differences in the time scale of processes in the climate system can be formalised using the mathe-
matical theory of slow-fast systems [Kue11].

2.2 Classification of climate models

Climate models can be classified according to features like which components they contain as sub-
models and the number of space dimensions. In more detail one can consider the components of
the state space, the parameters, possible forcings and boundary conditions, but also aspects of
computer implementations for numerical simulations. One speaks of a model hierarchy referring to
the increase/decrease of complexity between different classes of models. The IPCC list on the lowest

2going back only a few hundred years, with systematic measurements starting in the second half of the 19th century
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level of this hierarchy a class of Simple Climate Models (SCMs), like Energy Balance Models (EBMs)
or ocean box models. This class of models is used to study specific aspects of the climate system
in a stylised way. On the highest level of the hierarchy one finds Global Climate Models/General
Circulation Models(GCMs) and Earth System Models (ESMs). These models aim at a best possible
representation of (bio)-physical processes. Integrating these models however comes with a high
computational cost and thus it is not feasible to run huge ensembles of simulations for different
scenarios. Another approach that seeks to combine advantages of simple and complex models is
provided by Earth system models of Intermediate Complexity (EMICs).
Another way to distinguish different types of models is to classify them as process-based, statistical
or conceptual models [Goo15; Cru12]. An overview over Earth system models is given in [Fla11].
An important example of the simplest class of models is the Stommel box model [Sto61] of the
thermohaline circulation (THC) in the North Atlantic. It illustrates the northward transport at
the surface of the ocean of relatively warm and salty waters which then cool down, sink and are
transported back southward in the depth of the ocean. The THC is considered a tipping element
and the Stommel model is an early example of a model with more than one stable state. The model
and its variants have been and are still used in many studies (e.g. recently in [Alk+19; Loh+21;
KLN22]).

Example 1. (Stommel box model variant following [Mar00] and [Goo+10])
The model consists of two “well-mixed boxes of equal volume” B1 and B2, containing water having
a certain temperature and a certain salinity. Box B1 represents the ocean at high latitudes and B2

the ocean at lower latitudes. In the simplest variant of the model, the temperatures of the two boxes
are not part of the dynamics but given as parameters.
The dynamic variables then are just S1, S2 : R → R⩾0 representing the temporal evolution of the
salinity of B1 and B2, respectively

3

The model has the following parameters:

• T1, T2 : R – temperatures of boxes B1 and B2, respectively, with the condition that T2 > T1

(corresponding to lower temperatures at higher latitudes) ([T1] = [T2] = Θ)4

• k : R>0 – a hydraulic constant ([k] = L3M−1)

• α : R>0 – the thermal expansion coefficient ([α] = L−3MΘ−1)

• β : R>0 – the haline contraction coefficient ([β] = L−3M)

• H : R – represents the surface salinity flux when positive and surface freshwater flux when negative
(i.e. positive freshwater flux is presented as negative salinity flux) ([H] = T−1L3)

Two assumptions are made concerning the density of the water in the boxes and the flow between
the boxes:

• the density of the water in each box can be approximated by a linear function ρ : R⩾0×R → R>0

of its salinity s : R⩾0 and temperature T : R

ρ(s, T ) = ρ0 − α ∗ (T − T0) + β ∗ (s− s0)

where s0, T0 and ρ0 are salinity, temperature and salinity at a reference state ([ρ(s, T )] = L−3M)

• the strength of the salinity flow qB1→B2 : R between the two boxes (with densities ρ1, ρ2 : R>0,
respectively) is proportional to their density difference:

qB1→B2
= k ∗ (ρ1 − ρ2) (1)

3In an alternative formulation of the model there is only one dynamic variable representing the salinity difference
between the two boxes.

4The bracket notation [·] is used to indicate physical dimension. Please see the paragraph “Physical dimensions”
below for a discussion.

A-5



If s1, s2 : R⩾0 are the salinities of the boxes, by combining these two assumptions one gets for
i ∈ {1, 2}:

ρi = ρ(si, Ti) = ρ0 − α ∗ (Ti − T0) + β ∗ (si − S0)

and thus

ρ1 − ρ2 = ρ0 − α ∗ (T1 − T0) + β ∗ (s1 − S0)− (ρ0 − α ∗ (T2 − T0) + β ∗ (s2 − S0))
= α ∗ (T2 − T1) + β(s2 − s1)

Writing ∆T = T2 − T1 for the difference between the box water temperatures that are given as
parameters, and using the above assumptions, the salinity flow strength between the two boxes at
some point in time t : R can then be computed via a function q : R → R given their salinity difference
∆S(t) = S2(t)− S1(t) at time t:

q(∆S(t)) = k ∗ (α ∗∆T − β ∗∆S(t))

If q > 0, the direction of the salinity flow is from low to high latitudes at the surface and from high
to low at the bottom of the ocean (this corresponds to the current situation in the North Atlantic.)
The state of the model represents the salinities of the two boxes. The equations that specify their
temporal evolutions S1, S2 : R → R⩾0 are:

dS1

dt
(t) = −H + |q(∆S(t))| ∗∆S(t) (2)

dS2

dt
(t) = +H − |q(∆S(t))| ∗∆S(t) (3)

where ∆S(t) = S2(t) − S1(t). That is, the change in salinity at time t depends on the surface
salinity/freshwater flux and the product of the salinity flow strength between the two boxes and
the salinity difference. Recall that box B1 represents the cold water at high latitudes where the
surface flux is a freshwater flux from meltwater (decreasing salinity). This is expressed in Eq. 2 as a
negated salinity flux −H. For box B2 the surface flux represents the evaporation at lower latitudes
(increasing salinity). The flow strength is used as absolute value since the salinity balance of the
boxes does not depend on whether the direction goes from B1 to B2 at the top and from B2 to B1

at the bottom or vice versa.
Assuming e.g. that the temperature difference is greater than the salinity difference between the
two boxes (“temperature driven” situation), then, if the salinity of B2 is higher than that of B1, this
decreases both the rate of change of the salinity of B1 and B2 and the flow strength. Otherwise both
are increased. Whether the overall rate of change is positive or negative then depends critically on
the value of the parameter H, as does the existence of an equilibrium solution (this will be relevant
in Section 6).
The interest of the model is to illustrate what is called the salinity or ocean advection feedback : If the
circulation strength of the thermohaline circulation (THC) (that is represented by the strength of
the salinity flow in the model) is decreased by a perturbation, less salinity is transported to higher
latitudes. This results in lower density there, which in turn decreases the flow strength thereby
reinforcing the initial perturbation.

Classification of climate models

Some criteria that may be used to classify models:

• process-based, statistical, conceptual, . . .

• model classes:

– Energy Balance Model (EBM),

– Earth system model of Intermediate Complexity (EMIC),
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– General Circulation/ Global Climate Models with representations of the atmosphere and/or
the ocean (AGCM, OGCM, AOGCM)

– Earth System Model (ESM)

– Regional Climate Model (RCM),

– Ocean box model

• spatial dimensions: 0, 1, 2, 3

• subsystems of the climate system represented in the model: atmosphere, ocean, ice-sheets, carbon
cycle, . . .

Physical dimensions. Following a notation originally introduced by Maxwell and widely applied
in textbooks, we write [e] = d to denote that the physical quantity e has dimension d. For example,
we write [T ] = Θ to indicate that T has the dimension of a temperature.
Expressions like [e] = d and [T ] = Θ are called dimensional judgements, in analogy with type
judgements like q ∈ R or q : R.
Specifically, [T ] = Θ is an abbreviation for [T ] = λ(T, L,M,Θ).Θ and the anonymous function5

λ(T, L,M,Θ).Θ is called the dimension function of T . The judgement posits that measurements of
T increase by Θ when the units of measurement for times, lengths, masses and temperatures are
decreased by T, L,M,Θ : R>0, respectively, see [Bar+96] section 1.1.3.
Dimensional judgements are at the core of dimensional analysis and similarity theory [Buc14; Buc15;
Bri22; Bar+96; Gib11] and build the basis of the mathematical modelling and of the data-based
analysis of physical systems.

3 Framework

In this section we introduce a framework that we will use to describe computational structures in
the remainder of the paper.

Model

A time-dependent climate model is given by a system of ODEs or PDEs:

∂m

∂t
= F(p,m). (4)

where F is a higher-order function

F : P × (T × Rd → X) → (T × Rd → X ′) d∈{0,1,2,3} (5)

that, together with parameters p : P and suitable initial and, possibly, boundary conditions, implic-
itly defines a function m : T × Rd → X.

Example 2. For an ODE of the form

ṁ(t) = f(p, t,m(t)) (6)

with parameters p : P , time t : T , functions m : T → X and f : P × T ×X → X the higher order
function F in the above framework is defined by

F(p,m) = λt.f(p, t,m(t)).

5Note that we use the λ-notation to define anonymous functions in the sense of Church’s λ-calculus [Bar+84] as
common in the context of functional programming but also e.g. in Python.)
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Example 3. To express a PDE written

∂m

∂t
= m ∗ ∂m

∂r1
(7)

in abbreviation for

∂m

∂t
(t, (r1, r2, r3)) = m(t, (r1, r2, r3)) ∗

∂m

∂r1
(t, (r1, r2, r3)) (8)

with t : T , d = 3 ,(r1, r2, r3) : R3 and m : T × R3 → X in the above framework, we define

F(p,m) = λ(t, (r1, r2, r3)).m(t, (r1, r2, r3)) ∗
∂m

∂r1
(t, (r1, r2, r3))

Example 4. (continuing Example 1)
For the Stommel model of Section 2, we can instantiate this scheme as follows:

• T = R, d = 0

• a state of the model represents the salinity of the two boxes at some point in time; the salinity
cannot be negative: X = R2

⩾0
6

• thus the sought solution m is of type R → R2
⩾0

• the model is parameterised by constants k, α, β : R>0 and T1, T2, H : R, thus P = R3
>0×R3. If we

have a closer look at the defining equations, though, these parameters could actually be merged
into just one.

• the strength of the flow is given by a function q : P × R → R with

q(p,∆s) = k ∗ (α ∗∆T − β ∗∆s)

where p = (k, α, β, T1, T2, H) and ∆T = T2 − T1.

• with f : R3
>0 × R3 × R× R2

⩾0 → R2

f(p, t, S1, S2) = (−H + |q(p,∆S)| ∗∆S,+H − |q(p,∆S)| ∗∆S)

where ∆S = S2 − S1. Then F(p,m) = λt.f(p, t,m(t)) as above.

Dynamical Systems. As we have seen in the last section, to study its properties, the climate
system is considered as a dynamical system. One may consider notions of dynamical systems of
increasing complexity. We mention here autonomous, nonautonomous and monadic dynamical sys-
tems.
Following [Kuz13, Def.1.1]:

Autonomous Dynamical System

An autonomous dynamical system is a triple (T , X, {φt}t:T ), where T is a time set, X is a state
space, and {φt : X → X}t:T is a family of evolution operators satisfying the following properties:

φ0 = id (9)

φt1+t2 = φt1 ◦ φt2 (10)

for all x : X, t1, t2 : T such that both sides of the equations are defined when applied to x
(and where id is the identity function on X).

For continuous dynamical systems, the family of evolution operators {φt}t:T is called a flow. Note
that φt(x) is not necessarily defined for all combinations of t : T and x : X.
Similarly, for nonautonomous systems (cf. [KR11, Def.2.1]):

6sometimes the dynamics is simply expressed for the salinity difference, in which case we simply have X = R
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Nonautonomous Dynamical System

An nonautonomous dynamical system is a triple (T , X, {φt}t:T ), where T is a time set, X is a state
space, and {φt : T ×X → X}t:T is a family of evolution operators satisfying the following properties:

φ0(t0, ·) = id ∀t0 ∈ T (11)

φt1+t2(t0, ·) = φt2(t0 + t1, ·) ◦ φt1(t0, ·) ∀t0 ⩽ t1 ⩽ t2 ∈ T (12)

for all x : X, t0, t1, t2 : T such that both sides of the equations are defined when applied to x (and
where id is the identity function on X).

Not all systems of PDEs or ODEs specify a dynamical system. But if for any initial time t0 and
initial state function x0 : Rd → X there is a unique solution xx0

for Eq. 4 such that for all r : Rd

xx0
(t0, r) = x0(r) (13)

then a nonautonomous dynamical system (T ,Rd → X, {φt}t:T ) can be derived by defining

φt(t0, x0)(r) = x(t0 + t, ·) = x0(r) +

∫ t0+t

t0

F(p, x)(τ, r)dτ. (14)

To represent different kinds of non-determinism in dynamical systems, we use the abstract notion of
monad [Mac78], following Ionescu [Ion09]. This approach leads to the notion of monadic dynamical
system. Extending the above notion of nonautonomous dynamical system we define:

Nonautonomous Monadic Dynamical System

A nonautonomous monadic dynamical system is a quadruple (M, T , X, {φt
M}t:T ), where M =

(M,µ, η) is a monad, X is a state space, and {φt
M : T × X → M(X)}t:T is a family of evolu-

tion operators satisfying the following properties:

φ0
M(t0, ·) = ηX ∀t0 ∈ T (15)

φt2
M(t0, ·) = φt2(t1, ·) ◦M φt1

M(t0, ·) ∀t0 ⩽ t1 ⩽ t2 ∈ T (16)

where ◦M denotes the composition of the Kleisli category of the monad M.

The (families of) operations associated with a monad M = (M,µ, η) have the signatures (for any
type A)

µA : M(M(A)) → M(A)

ηA : M(M(A)) → M(A)

We see that M is an operation that maps types into types:

M : Type → Type

Moreover M needs to be a functor which means that there is for any types A,B an operation

mapA,B : (A → B) → (M(A) → M(B))

that lifts functions into the monad. Subscripts for these functions are usually left implicit.
Examples of monad functors are the powerset functor P and the list functor List which can be used
to model non-determinism, or a functor Prob of probability distributions 7. The identity functor Id
is also a monad and allows to recover deterministic dynamical systems from monadic ones.

7there are monads both for discrete and continuous probability distributions [Gir81; EK06; Jac15]
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Example 5. The operations associated with the list monad are defined as follows:

mapA,B : (A → B) → (List(A) → List(B))
mapA,B(f)([ ]A) = [ ]B

mapA,B(f)(a ::A as) = (f(a) ::B mapA,B(f)(as))

ηA : A → List(A)
ηA(a) = [a]A

µA : List(List(A)) → List(A)
µA([[ ]A]List(A)) = [ ]A

µA((as ::List(A) ass)) = as ++A µA(ass)

where [ ]A : List(A) and (::)A : A × List(A) → List(A) are the constructors of the list type, (++)A :
List(A) × List(A) → List(A) is the operation that appends two lists and [a]A is a notation for
(a ::A [ ]A). The binary operations (::) and ++ are written infix.

When we subsequently use lists, subscripts will be dropped if they can be inferred from the context.

Time T and time series

• The time set of a dynamical system can be R (for continuous dynamical systems), Z,N (for
discrete dynamical systems) or more generally a non-empty set that at least carries the structure
of a monoid [Kuz13; GM12].

• Time in physical models is continuous, i.e. T = R.
• The index set I of any sequence of observations (in their original form) is necessarily discrete and

finite, corresponding to an index type I = N<n for some n : N. To obtain a continuous sequence
of data from observations of type D, a function R → D has to be reconstructed from the given
data points.

• A time series is called regular if no value is missing and values are equally spaced in time [Dak+12].

• Sequences of proxy data are typically not equally spaced, in the sense that the time spans between
subsequent data points might vary. To make time series of observations from different sources
comparable, sequences have to undergo a dating process to obtain a regular time series (see
Ch.5.3.2 of [Goo15] for different dating methods).

• Computer simulations require some form of discretisation.

To bridge from the mathematical definition of a model and a continuous dynamical system to
a computational framework, we need methods to obtain a discrete-time dynamical system that
can approximate the dynamics described by a model or continuous-time system. Moreover such a
computational framework should be flexible enough to vary model parameters and forcings. We do
not dwell on discretisation or numerical methods in this report, we just note that given appropriate
such methods, we can derive a discrete dynamical system roughly as follows:
Given a model with associated flow φ and a (finite) 8 time discretisation ts : N⩽N → T , N : N, N > 0,
we can define a one step function

next : N<N ×X → X

next(k, x) = φts(k+1)−ts(k)(ts(k), x)
(17)

8One might alternatively want to determine a time step for arbitrary many steps via a function N → T , which
would allow to compute simulations without fixing the number of computation steps in advance until a termination
criterion is met. Such computations are not in general guaranteed to terminate and we do not discuss them further
in this document.
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and its iteration

flow : N<N ×X → X

flow(0, x0) = x0

flow(n+ 1, x0) = next(n,flow(n, x0))

(18)

to approximate φ on the interval [ts(0), ts(N)] and compute trajectories by

trajectory : N<N ×X → List(X)
trajectory(0, x0) = [x0]

trajectory(n+ 1, x0) = τ ++[next(n, last(τ))]

where τ = trajectory(n, x0)

(19)

where ++ appends lists and last returns the last element of a list.
Similar operations can be derived for a monadic dynamical system with flow φM for M = (M,µ, η),
using the monad’s unit η and the functorial map of the underlying functor M .

nextM : N<N ×X → M(X)

nextM(k, x) = φ
ts(k+1)−ts(k)
M (ts(k), x)

(20)

flowM : N<N ×X → M(X)

flowM(0, x0) = ηX(x0)

flowM(n+ 1, x0) = map(λx.next(n, x))(flow(n, x0))

(21)

trajectoryM : N<N ×X → M(List(X))
trajectoryM(0, x0) = ηList(X)([x0])

trajectoryM(n+ 1, x0) = map(λxs.xs ++[next(n, last(xs))])(mτ)

where mτ = trajectoryM(n, x0)

(22)

such that (M,N, X, {flowM(n, ·, ·)}n:N) is a discrete monadic dynamical system.

For numerical simulations, the deterministic trajectory function allows us to compute n-step approx-
imations [x0, . . . , xn] : List(X). 9 Similarly, the monadic version of trajectoryM computes monadic
values mxs : M(List(X)) containing such n-step trajectories. E.g. for a probability monad one
would thus obtain a probability distribution of trajectories, and for the power set monad a set of
trajectories.

In the following sections we discuss the key notions listed in the introduction using the framework
introduced above.

4 Climate Sensitivity

Climate Sensitivity (CS) is a measure of the change of the global mean surface temperature (GMST )
in response to the change of the CO2 concentration in the atmosphere. The first estimates have
been published as early as 1896 [Arr96].
Since the 1960s scientists have been systematically studying the GMST change in response to the
change of CO2 content in the atmosphere along what is referred to as different lines of evidence
[KRH17], combining model simulations with models of different levels of complexity with instru-
mental or paleoclimatic proxy data.
The classic equilibrium climate sensitivity (ECS ) experiment estimates the change in GMST relative
to a reference state when the climate system will have settled to a new equilibrium after having been
perturbed by doubling the CO2 concentration in the atmosphere.

9One might additionally want to indicate the order of the approximation, e.g. for a 0-dimensional model with
solution x : T → X, a q-order approximation would guarantee that xk = x(tk)+O((∆t)q) for a step length of ∆t : T .
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Climate sensitivity, defined as a change in temperature measured between two equilibrium states,
is and will remain a theoretical construction. The explicit measure of the temperature change at
equilibrium cannot be made, in practice or in principle, because it would require “fixing” both
external factors (i.e., the orbital forcing) and even internal components of the climate system (e.g.,
the “ice sheets”) and controlling accurately the CO2 concentration.
Such experiments can however be made with climate models (simple and more complex), and it
is our understanding of the connection between these models and the real world that allows us
to attribute and estimate a “climate sensitivity” of our Earth. The meaning and intuition about
climate sensitivity as a change in “equilibrium” states generally involves assumptions of time scale
separation: climate sensitivity is understood as the measured response of some “fast” components
of the climate system (e.g., the atmosphere) assuming that other components of the climate system
have not changed (e.g., the ice sheets). As we will develop below, different assumptions about what
is “fast” and “slow” lead to different definitions of the climate sensitivity, and [Roh+12] introduces
a notation to that end.
The time scale separation is an arguable assumption (e.g., the adjustment time scale for the deep
ocean temperature is of the order of 5000 years, a time scale over which the orbital forcing is
significantly changed). Definitions of climate sensitivity that do not necessitate time scale separation
have been proposed (e.g., [Ghi14] defines it as the growth of the Wasserstein distance between two
pullback attractors) but their meaning is arguably much less intuitive.

Definitions. In the IPCC assessment reports, equilibrium climate sensitivity is defined as the
change of GMST for the radiative forcing resulting from a doubling of the CO2 level in the atmosphere
wrt pre-industrial10, a temperature difference (see p. TS-14, [Mas+21]).
Another approach to ECS is based on an equilibrium climate sensitivity parameter [Roh+12] which
quantifies a change in GMST per unit change in radiative forcing.

Equilibrium climate sensitivity (ECS)

ECS: The ECS quantifies the change of GMST for the radiative forcing resulting from an inter-
vention which doubles the CO2 level in the atmosphere wrt preindustrial

∆T2×CO2 = Teq − Tpi ∆T2×CO2 , Teq, Tpi : R [∆T2×CO2 ] = [Teq] = [Tpi] = Θ

where Tpi is the GMST at the preindustrial reference state and Teq the equilibrium GMST reached
when the system has returned to radiative equilibrium after the intervention.

ECS Parameter: The ECS parameter S• quantifies the change in mean surface temperature
per unit change in radiative forcing

S• : R [S•] = ΘM−1T3.

According to [Roh+12], it is typically assumed that ∆T2×CO2 is related to S• by

∆T2×CO2
= S• ∗∆Q2×CO2

(23)

where ∆Q2×CO2
: R, [∆Q2×CO2

] = MT−3 is the difference between the amount of radiative forcing
resulting from a doubling of the CO2 level in the atmosphere and a reference value prior to the
doubling intervention.
According to Goosse [Goo15] “relatively good approximations” of the change in radiative forcing
resulting from a change in CO2 concentration “can be obtained [...] from a simple formula”. Myhre
et al. [Myh+98] give the following formula11:

∆QCO2
: R2 → R ∆QCO2

(C,Cref) = 5.35 ∗ ln
(

C

Cref

)
Wm−2 (24)

10since the pre-industrial state is assumed to be in radiative equilibrium
11Myhre et al. [Myh+98] also give formulas for other greenhouse gases, e.g. CH4 and N2O.
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where C,Cref : R are CO2 concentrations of the atmosphere (dimensionless), for the current and a
reference state, respectively, and [∆QCO2

(C,Cref)] = MT−3. Using this formula, a doubling of the
CO2 concentration of the atmosphere results in a change of radiative forcing of 5.36∗ln 2 ≈ 3.7Wm−2.

The informal definitions given above suggest the following formalisation:
Let the evolution of the climate system with state spaceX be described by the flow {φt : X → X}t∈T
and xpi : X be the pre-industrial state of the climate. Let moreover double : X → X be a function
that doubles the CO2 content of the atmosphere and gmst,CCO2

: X → R be functions that compute
the GMST and the CO2 concentration in the atmosphere, respectively. Then

∆T2×CO2 = Teq − Tpi

where

Teq = gmst
(
lim
t→∞

φt(double(xpi))
)

and Tpi = gmst(xpi)

and, if S• is defined based on ∆T2×CO2
,

S• =
∆T2×CO2

∆Q2×CO2

≈ 0.3 ∗∆T2×CO2

where ∆Q2×CO2 = ∆QCO2(CCO2(double(xpi)),CCO2(xpi)) ≈ 3.7Wm−2

ECS as a standard metric for climate models is however more specific with respect to the processes
that are modelled (see below). One might also want to represent internal variability of the climate
system or uncertainty about the pre-industrial climate state by using a stochastic model.

Radiation balance. The relation between ∆T2×CO2 and S• given in Eq. (23) follows from the
idea [Goo15; Han+84] that, given a particular change in radiative forcing ∆Q : R, the radiative
balance (the difference between incoming and outgoing radiation at the top of the atmosphere)
∆R(x) : R, [∆R(x)] = MT−3 for a climate state x : X can be estimated by a linear function
R̃ : R → R with

R̃(∆T (x)) = ∆Q− 1
S•

∗∆T (x) (25)

which takes a temperature difference ∆T (x) = gmst(x) − gmst(xref) between the climate state and
a reference state xref : X as input.
The system is in radiative equilibrium in state x if ∆R(x) = 0. This is the case if

∆T (x) = ∆Q ∗ S• (26)

Doing this calculation for ∆Q2×CO2
, we get (an estimation of) ∆T2×CO2

as in Eq. (23) above.
On the other hand, if ∆Q2×CO2 and ∆T2×CO2 have been determined by a numerical simulation,
Eq. 26 can be used to calculate (an estimation of) a value for S•.

The negated inverse of the ECS parameter, −S−1
• (the slope of R̃ above) is called the climate

feedback. It can in turn be understood as being the sum of multiple different feedbacks (see below).

Variants. Estimates of ECS based on different data sources vary. Reasons for these differences are
recently being addressed in the literature, and also other variants of climate sensitivity have been
proposed. The IPCC lists the following variants of climate sensitivity:

Climate Sensitivity: Variants

• equilibrium climate sensitivity (ECS)

• effective climate sensitivity (EECS )
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• earth system sensitivity (ESS)

• transient climate response (TCR)

• transient climate response to cumulative CO2 emissions (TCRE)

Using the notion of radiative forcing, the IPCC calls different variants of climate sensitivity climate
metrics: ”Measures of aspects of the overall climate system response to radiative forcing” [Mat+21].
Given the IPCC definition of ECS as response to a change in the CO2 concentration, this definition
of climate metric seems to implicitly translate a change in CO2 concentration into an estimation of
corresponding radiative forcing.
We will address the differences between these variants in Section 4.1 below.

Estimation methods. Knutti et al. [KRH17] write about different ways of estimating climate
sensitivity (and give an extensive overview over different estimates in the literature in their figures
1–3):

“ECS and TCR cannot be measured directly, but in principle they can be estimated
from:

(i) quantifying feedbacks, ECS and TCR in comprehensive climate models;

(ii) potentially constraining models by their representation of present-day mean climate
and variability;

(iii) analysis of the post-industrial observed warming of the ocean and atmosphere in re-
sponse to forcing

(iv) the short-term climate response to forcing (such as volcanic eruptions) or interannual
temperature variations;

(v) paleoclimate records (for example, the cooling at the Last Glacial Maximum or the
warming during earlier warm periods). ”

The authors of [Roh+12] emphasise that in order to make estimates of climate sensitivity comparable,
it is important to be transparent about the climate feedbacks a particular calculation accounts for.
Knutti and Rugenstein illustrate which feedbacks are typically included in the different variants of
CS, on which time scales these feedbacks occur (in Fig. 1(b) and Fig. 2, respectively, of [KR15]) and
also indicate which time scales relate to which kind of data (model simulation output, instrumental
and proxy records). However, they also remark:

”The separation of ECS and ESS is often made along timescales, with the argument that
those feedbacks included in ECS essentially scale with surface temperature, whereas
others in ESS partly have their intrinsic (and often slower) timescales. However, this
does not apply to atmospheric chemistry which responds quickly. Here, the reason is a
historic one, as the early climate models simply did not simulate interactive chemistry.
This supports the argument that the separation of ECS and ESS is somewhat arbitrary
in the real world where a lot of processes interact.”

Climate feedbacks: Examples

The estimations of climate sensitivity differ in terms of the climate feedbacks taken into account

• ECS, TCR, TCRE include the following up to centennial scale (“fast”) feedbacks:

– clouds

– lapse rate

– water vapour
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Figure 2: Example of positive and negative feedback loops. (Redrawn from TiPES Deliverable D4.1)

– albedo/land surface

– Planck

• ESS : Additionally included feedback processes:

– atmospheric chemistry (another “fast” feedback that however was not available in earlier
generations of process-based models)

– up to millennia or longer (“slow”):

∗ ocean circulation, ocean chemistry, weathering

∗ dynamic vegetation, terrestrial ecosystems

∗ permafrost carbon

∗ ice sheets

Which of these feedbacks contribute to the calculation of a particular variant of CS is determined by
the model that is being used. The ECS parameter can be refined by considering a sum of feedback
parameters

Σn
i=1λi λi : R [λi] = Θ−1MT−3 1 ⩽ i ⩽ n : N (27)

and defining the ECS parameter as (cf. [KR15; Roh+12])

S• = − 1

Σn
i=1λi

. (28)

4.1 Computational structure of CS experiments

We have to distinguish between simple EBMs in which climate sensitivity is included as a parameter
(or based on a small number of feedback parameters) and more complex models in which climate
sensitivity is an “emergent property” and measured as response to perturbation of the system.
As seen above, different methods to estimate climate sensitivity are used in the literature. Here we
describe two representative ones:

1. performing a perturbation experiment with a complex climate model to observe the resulting
change in temperature (as emergent behaviour);

2. given observation or proxy data for a reference period, use a simple model which is parameterised
over S•, perform model simulations for that reference period using different plausible values S•,
and compare the model output to the given data to see which choice of the parameter fits best
according to a chosen measure.
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Estimation by perturbation experiment. The first approach consists in a perturbation ex-
periment with a complex model in which climate sensitivity is an emergent property. We describe
this method in parallel for the different variants of CS.

Given:

• A model m with time set T , state space X, parameters (f, p′) : (T → P ) × P ′, where the first
component denotes a potentially time-dependent forcing, and a dynamical system induced by the
model.

• An initial state x0 : X at time t0 : T , often a preindustrial state, in (near) radiative equilibrium
or, a probability distribution on initial states px0 : Prob(X)

• A perturbed initial state x′
0 : X, for example obtained by doubling the CO2 concentration in the

atmosphere of the initial state through a function double : X → X, with x′
0 = double(x0) and

px′
0 = map(double)(px0) : Prob(List(X)) in the probabilistic case.

Now the basic computation follows the scheme of what we might call a comparison experiment :

• Compute two numerical approximations for a time discretisation ∆t

xsref = [x0, . . . xn] = trajectory(n, x0) and xs = [x′
0, . . . x

′
n] = trajectory(n, x′

0)

in the deterministic case or otherwise two probability distributions pxs, pxs′ : Prob(List(X)) either
by

pxsref = trajectoryProb(n, x0) pxs = trajectoryProb(n, x
′
0)

or

pxsref = map(trajectory(n, ·))(px0) pxs = map(trajectory(n, ·))(px′
0)

xsref and pxsref play the role of reference trajectory and reference distribution of trajectories,
respectively.

• Compare xsref and xs or pxsref and pxs, respectively, using functions

comparedet : List(X)2 → Valc

or

compareprob : Prob(List(X))2 → Valc

where Valc is a type of values, e.g. R.

This comparison might for example be done in terms of the difference between the global mean
surface temperature at statistically measured end states xf , xfref : X 12 obtained by applying a
function

measureX : List(X) → X

12Again, if we assume some form of time scale separation, the “statistical measure” involves that states xf and xref

are observed over a time long enough to effectively sample the fluctuations of the fast variables. In technical terms,
we want to measure the invariant set of meteorological variables associated with the climate states xf . Discarding
this time-scale separation assumption comes at a huge cost: it involves introducing the notion of pullback attractor
(e.g. [Ghi14]) that would be overwhelming for our purpose.

A-16



to xs and xsref:

gmst(xf )− gmst(xfref) where xf = measureX(xs), xfref = measureX(xsref).

See below for remarks concerning different algorithmic possibilities for the comparison of trajectories.

The different variants of climate sensitivity now correspond to variations in the models and differ-
ent ways of computing the numerical approximations (we just give the deterministic variants, the
probabilistic/monadic ones can be obtained as above using map):

• – ECS: Choose a model mECS that represents the processes required to account for the climate
feedbacks usually associated with ECS and a forcing

ConstCO2
: T → R

that keeps the atmospheric concentration of CO2 constant. Perturb initial state by doubling
the CO2 concentration and integrate the model maintaining this perturbation until an/a
(approximate/statistical) radiative equilibrium state is reached after nECS : N steps

The computation thus amounts to

xs = (trajectorymECS
(nECS, ·) ◦ double)(x0)

For the reference path integrate the model with the unperturbed initial state.

xsref = trajectorymECS
(nECS, ·)(x0)

Then ∆T2×CO2
can be computed as indicated above by comparing the global mean surface

temperature for the representative final states resulting from these two computations.

– ESS: As for ECS but with a model mESS that accounts for all the feedbacks to be con-
sidered for ESS and a number of computation steps nESS : N such that all processes can
(approximately) equilibrate.

– EECS: Use a model mECS as for ECS. Perturb the initial state and integrate the model
for nEECS : N time steps representing ≈ 100 − 200 yrs. Then estimate an equilibrium state
xeq : X using a function estimateeq : List(X) → X13

xeq = (estimateeq ◦ trajectorymECS
(nEECS, ·) ◦ double)(x0)

Do the same with the unperturbed initial state to obtain a reference equilibrium state xref-eq.
Compute the difference in GMST between the two equilibrium states as above.

– TCR: Use a model mTCR with a forcing

Inc1%CO2
: T → R

representing a 1% increase of atmospheric CO2 concentration per year until the double of
the initial CO2 concentration is reached.14 (Again, the forcing is given as part of the model
parameters, say p = (Inc1%CO2

, p′) where p′ might be other parameters.) Integrate the model
for nTCR : N time steps, representing ≈ 60− 80 yrs. Then compute a representative climate
state by averaging globally in space, and over 20 yrs in time, centred at the time of CO2

doubling, using a function climate : List(X) → X

xf = (climate ◦ trajectorymTCR
(nTCR, ·))(x0)

Compute the GMST difference between xf and a reference state.

13standard methods applied in studies cited by the IPCC are from [Han+05] – using fixed sea surface temperatures–
and [Gre+04] – using linear regression

14This seems to require knowledge about the CO concentration for the initial state to define the forcing.
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For a given dynamical system with state space X and a numerical method for computing N : N
time steps, we suggest the following generic schemes:

comparisonExperiment : (List(X)2 → Valc)× N<N ×X2 → Valc

comparisonExperiment (compare, n, x, x′)

= (compare ◦map(trajectory(n, .)))(x, x′)

(29)

perturbExperiment : (List(X)2 → Valc)× (X → X)× N<N ×X → Valc

perturbExperiment (compare, perturb, n, x)

= comparisonExperiment(compare, n, x, perturb(x))
(30)

Based on these, one might describe a general CO2 doubling CS experiment as

csExperiment : N<N ×X → Valc
csExperiment (n, x) = perturbExperiment(gmst ◦measureX, double, n, x) (31)

When such simulations are performed with multiple models, the results might in the simplest case
be averaged. However, one might also incorporate information from model validations: the better
a model is capable of reproducing observational data for a reference time period, the more credible
it is. When aggregating CS values resulting from the same experiment with different models (as in
the CMIP project), the individual values might thus be weighted according to the performance of
the respective model in validation experiments.

Parameter experiment. The idea of validating the model output against reference data also
forms the basis for the second method, yet in a different way.
This time, CS is not estimated as an emergent property of the model, but included in the model as
a parameter.
This time we have

• A list of candidate values for the ECS parameter cs = [S0, . . . , Sk].

• A list of models [m0, . . . ,mk] with state space X and parameter space P = R × P ′, where the
first component of a parameter fixes the value of the ECS parameter such that model mi has
parameters (Si, p

′) for 0 ⩽ i ⩽ k.

• A time series o : T → Valo of observational data and a time discretisation [t0, . . . , tn] for an
interval of interest.

• An initial state x0 : X compatible with the observations o(t0)

With these inputs:

• Compute numerical approximations

xsi = [xi0, . . . xin] = trajectorymi
(n, x0) (0 ⩽ i ⩽ k)

for the different candidate values of the ECS parameter.

• Extract the observations of interest from the states in each xsi via by mapping an observation
function observe : X → Valo

oxsi = map(observe)(xsi)

and compare the oxsi to the observational reference data os = [o(t0), . . . , o(tn)] according to a
distance metric compare : List(Valo)

2 → Valc, resulting in a list of distances [d0, . . . , dk] where
di = compare(oxsi, os).
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• Determine which of the xsi is the best approximation to the observational data using a function
best : (ds : List(R)) → N<length(ds) which returns the index j of the best approximation.

• Return the candidate value for the ECS parameter that best fits the given observations os:15

Sbest = nth(cs, best(map(compare ◦map(observe))([xs0, . . . , xsk])))

where the auxiliary function nth : (l : List(A))×N<length(l) → A given a list and an index (smaller
than the length of the list) returns the list element at that index.

Remarks. Above we did not address algorithmic particularities of how to compare trajectories.
In fact, there are structurally different ways to proceed.
Given an observable

observe : X → Valo,

a comparison function

compare : Val2o → Valc,

and an aggregation function for Valc
16

aggregateValc : List(Valc) → Valc

one could first compute a point-wise comparison between the two trajectories and the aggregate the
outcomes:17 18

(aggregateValc ◦mapList(compare))(zip(map▲(mapList(observe))(xs, xs′)))

spelled out: given a pair of trajectories (xs, xs′) : List(X)2, the function observe is mapped onto
each of the two trajectories using mapList and map▲. This results in a pair of two lists of observa-
tions (List(Valo)

2) which are “zipped” together resulting in a list of pairs of observations (List(Val2o)).
Then the function compare is mapped onto this list of observation pairs, again using mapList. The re-
sulting list of comparison values (List(Valc)) is finally aggregated to a single outcome of type Valc.

19

Alternatively, given an aggregation function

aggregateValo : List(Valo) → Valo

one may first aggregate the state observations and then compare the results:

(compare ◦map▲(aggregateValo ◦mapList(observe)))(xs, xs′)

The two options will not necessarily give the same results.
For the probabilistic case (and similar for an arbitrary monad), additionally a measure

measureValo : Prob(Valo) → Valo,

or

measureValc : Prob(Valc) → Valc

15Mapping a function f onto a list [x0, . . . , xn] means applying this function to each element of the list without
changing the order of the elements, i.e. map(f)([x0, . . . , xn] = [f(x0), . . . , f(xn)]).

16which in turn might be induced by a binary operation ⊕ : Val2c → Valc
17Below we annotate the map function for the different functors for better readability. We write map▲ for the map

of the diagonal functor Diag : Type → Type with Diag(A) = A × A, mapList for the map of the list functor defined
in Example 5 and mapProb for the map of a functor that maps each type to the type of probability distributions over
this type.

18The function zip : List(A)× List(B) → List(A× B) transforms a pair of lists of equal lengths into a list of pairs
of the same length: zip([a0, . . . , an], [b0, . . . , bn]) = [(a0, b0), . . . , (an, bn)].

19For reading long concatenations of multiple functions, proceed from right to left and trace the types of the
intermediate computations.
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is required to compute an outcome of type Valc.
20

Now, two probability distributions of trajectories pxs, pxs′ : Prob(List(X)) can e.g. be compared
by

(compare ◦map▲(measureValo ◦mapProb(aggregateValo ◦mapList(observe))))(pxs, pxs′)

or

measureValc ◦mapProb(compare) ◦map▲(mapProb(aggregateValo ◦mapList(observe)))(pxs, pxs′)

Again, it is not clear that these computations will return the same result.

It would also be interesting to consider non-deterministic variants of the second experiment. More-
over, one might want to compute not only one optimal solution but several that are “good enough”
according to some metric and compare the corresponding choices for S•.

IPCC estimates. Using such and other methods, the IPCC gives estimates of value ranges for
∆T2×CO2

based on “Understanding of climate processes, the instrumental record, paleoclimates and
model-based emergent constraints”. According to the AR6 WGI report, it is considered as very
likely 21 that the value of ∆T2×CO2

lies between 2◦C and 5◦C with high confidence in the lower
and medium confidence in the upper bound As best estimate the report now gives a value of 3◦C
with [2.5◦C, 4◦C] as high confidence range, while in AR5 a best estimate was not given and the
likely range was stated as [1.5◦C, 4.5◦C]. (However, it is also said that the CMIP6 models exhibit
“a larger range of climate sensitivity” and a higher average than the CMIP5 models and the AR6
best estimate. This behaviour is attributed to an amplifying cloud feedback.) Besides giving these
ranges, the report also states that since AR5 “independent lines of evidence, including proxy records
from past warm periods and glacial-interglacial cycles, indicate that sensitivity to forcing increases
as temperature increases (TS.3.2.2)”. The latter seems to indicate that “sensitivity to forcing” is
to be understood not with respect to pre-industrial as in the IPCC’s ECS definition, but in a more
general sense in which reference states with different values of GMST can be considered.

4.2 Selected references

Origins and early studies:

• A very early study of the influence of the CO2 content of the atmosphere on the mean surface
temperature: Arrhenius [Arr96].

• Budyko [Bud69] and Sellers [Sel69] study EBM models of the radiative fluxes at the top of the
atmosphere.

• The original definition of ECS stems from the Charney report [Cha+79] which also gave the first
estimate range based on the models by Manabe/Wetherald [MW75] and Sellers[Sel69].

• Hansen et al. [Han+84] study climate sensitivity in three ways that have become standard “lines
of evidence”: by model simulation, from paleo data and from the instrumental record.

• An early review of climate sensitivity studies: Schlesinger [Sch83].

There is a huge body of literature with computations of forms of ECS and TCR based on different
lines of evidence. In the last decade there have been efforts to systematise these results and to
develop the notion of “climate sensitivity” to be more specific about underlying assumptions of
individual computations of climate sensitivity. As studies have also shown a likely state dependence
of ECS (e.g. [AGW15]), recent publications suggest extensions to the basic concept. ▶ TiPES

Motivates
Objectives 4.1
and 4.2

The latter is

20Note that aggregateValo and aggregateValc might be seen as measures for the list monad.
21The IPCC uses a “calibrated language” for a consistent treatment of uncertainty estimates where natural language

expressions like likely, very likely, high confidence are chosen according to guidelines described in [Mas+10].
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the focus of TiPES WP4 “From Climate Sensitivity to a general theory of Climate Response across
scales”.
The following are papers that systematise and improve the study of climate sensitivity and more
generally the climate response to external forcing:

• The PALEOSENS group [Roh+12] is concerned with a systematic treatment of ECS studies
based on paleo data. To generalise the standard 2×CO2 ECS notion they propose to use a climate
sensitivity parameter per unit radiative forcing instead (the parameter S• discussed above) and
to make explicit the time-scale of the climate feedbacks that are considered in the sensitivity
computation. Beyond the “Charney” definition of ECS which includes “fast” feedbacks, they
propose ESS as a variant of ECS with the same general structure, but which also includes “slow”
feedbacks.

• The authors of [Hey+16] study and discuss the problems with ECS in presence of tipping points.

• Knutti et al. discuss the shortcomings of linearity assumptions (as e.g. in Eq. 25) that are common
in climate sensitivity studies in [KR15] and alternative metrics “beyond ECS” in [KRH17].

• A long recent report [She+20] on the assessment of “Earth’s climate sensitivity” combines evidence
from the understanding of feedback processes and both the historical and the paleo record with
expert judgement. To transparently deal with uncertainty, the storyline approach [She+18] is
employed, as already done in an earlier paper by some of the authors [Ste+16]

A concluding quote on the difficulty of “quantifying ECS” from [She+20]:

Quantifying ECS is challenging because the available evidence consists of diverse strands,
none of which is conclusive by itself. This requires that the strands be combined in
some way. Yet, because the underlying science spans many disciplines within the Earth
Sciences, individual scientists generally only fully understand one or a few of the strands.
Moreover, the interpretation of each strand requires structural assumptions that cannot
be proven, and sometimes ECS measures have been estimated from each strand that
are not fully equivalent. This complexity and uncertainty thwarts rigorous, definitive
calculations and gives expert judgement and assumptions a potentially large role.

5 Commitment

In the context of climate change, one comes across three different notions of commitment:

1. climate change commitment as a technical notion, used to quantify delayed responses of the climate
system due to some form of inertia, e.g. warming that would result from past emissions even if
CO2 emissions were stopped immediately

2. commitment in the sense of contractual obligation as used in e.g. in the Kyoto protocol

3. commitment as a modal operator capturing a form of personal dedication to the fulfilment of a
task

Our main focus here is on the first notion.

5.1 Climate change commitment

The first usage of this notion according to the AR4 WGI report is in [Ram88].

“The inferred trace gas increases from the preindustrial era to the present have committed
the planet to an equilibrium surface warming of about 0.6 to 2.4 K. Furthermore, at the
current rate of increase in the trace gases, the committed equilibrium warming of the
globe increases by about 0.13 to 0.5 K per decade.” (emphasis added)

A-21



We see that Ramanathan’s notion of commitment is defined in terms of an equilibrium warming.
Wetherald et al.[WSD01] similarly consider a notion of warming commitment:

“The difference between the realized warming at a given time and the warming of climate
that would occur if the climate had an infinitely long time to adjust to that radiative
forcing (i.e. the gap between the equilibrium and the realized temperature change for a
given forcing) is referred to here as “the warming commitment”.

We re-examine the present day warming commitment, its future changes and other
committed climate responses. [...] allows the climatic commitment of a wide
range of variables to be examined [...]” (emphasis as in the source)

Wigley’s 2005 paper “The climate change commitment” [Wig05] (according to the IPCC AR5 WGI
contribution) is the source of the terminology and most of the variants of the climate change com-
mitment notion in the IPCC glossary. On alternative terminology for commitment in earlier work
Wigley writes:

“For global-mean temperature, this is referred to as the unrealized warming [Han+85],
residual warming [Wig84], or committed warming [WSD01]. Here, I use the term warm-
ing commitment or, to include sea level rise [WR93; SM99], climate change com-
mitment.” (citations adapted)

and on equilibrium warming commitment:

“The usual (or equilibrium) CC warming commitment at time t is the dif-
ference between the equilibrium warming for forcing at this time (∆Te) and
the corresponding realized warming (∆Tr), ∆Te − ∆Tr. This is related to the
radiation-imbalance concept [Han+02; Pie03]. If ∆Q is the forcing to date, and if ∆Qr

is the forcing that gives an equilibrium warming of ∆Tr, then the radiation imbalance is
∆Q−∆Qr (∆Q−∆Qr is approximately equal to the flux of heat into the ocean [Pie03]).
Hence

∆Te −∆Tr = (∆Q−∆Qr)(∆T2× /∆Q2×)

where ∆Q2× is the radiative forcing for a CO2 doubling (about 3.7Wm−2 ) and ∆T2× is
the corresponding equilibrium global-mean warming. A central estimate of ∆Q (account-
ing for both natural and anthropogenic forcings) is about 1.7Wm−2 , whereas ∆Tr is
about 0.7◦C. Given ∆T2× = 2.6◦C [WR01], a central value for the current equilibrium
warming commitment is about 0.5◦C, with a corresponding radiation-imbalance es-
timate of 0.7Wm−2 . These results are in accord with other estimates in the literature,
but uncertainties are large.” (citations adapted)

We see that the computation of equilibrium climate commitment presented by Wigley depends on
the value of ECS. He motivates his above computation of equilibrium commitment by referring to
“the radiation-imbalance concept”. To our understanding, he assumes the relation between change
in radiative forcing and change in temperature discussed in the beginning of Section 4, such that
(∆T2 × /∆Q2×) = 1/S•. The estimate ∆Q2× ≈ 3.7Wm−2 coincides with the estimate resulting
from the Myhre et al. formula of Eq. (24).

Wigley posits the two scenarios that are still standard:

“The assumption of constant atmospheric composition on which the warming commit-
ment idea is based is clearly unrealistic, even as an extreme case of what might happen in
the future. An alternative indicator of the commitment to climate change is to as-
sume that the emissions (rather than concentrations) of radiatively important species will
remain constant. This Report investigates the constant-composition (CC) warming
and sea level commitments, the constant-emissions (CE) commitments, and the
uncertainties in each.”
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He proposes to study time-dependent variants of commitment instead of just the equilibrium/asymptotic
commitment 22

“ Because it would take an infinite time for the unrealized warming to appear, a more
useful definition makes the unrealized warming a time-dependent quantity, namely, the
evolving changes in global-mean temperature that would result if atmospheric composi-
tion were kept constant at its present state [Wig84]. This is the definition I use here.
Temperatures under this new definition tend asymptotically to the previous equilibrium
commitment definition. The new definition can be applied equally to the CC and CE
commitments and can be used for both temperature and sea level.” (citation adapted)

Further geophysical variants. Wigley’s definitions of commitment are based on a difference,
while the AR5 WGI report [Kri+13] also mentions the usage of a ratio-based constant composition
commitment, citing [Sto04; Mee+07; Sol+09; Eby+09]:

“A measure of constant composition commitment is the fraction of realized warming
which can be estimated as the ratio of the warming at a given time to the long-term
equilibrium warming [...]”

Furthermore, the AR5 WGI report discusses the following form of commitment studied in [CC10]
(and similarly in [Hel+10]):

“Another form of commitment refers to climate change associated with heat and car-
bon that has gone into the land surface and oceans. This would be relevant to the
consequences of a one-time removal of all of the excess CO2 in the atmosphere and is
computed by taking a transient simulation and instantaneously setting atmospheric CO2

concentrations to initial (pre-industrial) values [...]”

Non-geophysical variants. There are also notions of commitment that are related to inertia
in technological, societal and economical aspects. An overview is given in the AR5 WGI report
[Kri+13]:

“A more general form of commitment is the question of how much warming we are
committed to as a result of inertia and hence commitments related to the time scales
for energy system transitions and other societal, economic and technological aspects
(Grubb, 1997; Washington et al., 2009; Davis et al., 2010). For example, Davis et al.
(2010) estimated climate commitment of 1.3◦C (range 1.1◦C to 1.4◦C, relative to pre-
industrial) from existing CO2-emitting devices under specific assumptions regarding
their lifetimes. These forms of commitment, however, are strongly based on political,
economic and social assumptions that are outside the domain of IPCC WGI and are not
further considered here.”

5.2 Other usages

Commitment also denotes an obligation following from entering a contract. E.g. in the following
paragraph from the IPCC AR5:

“[...] Parties with quantified emission limitations (and reduction obligations) in aggregate
may have bettered their collective emission reduction target in the first commitment
period, but some emissions reductions that would have occurred even in its absence were
also counted. The Protocol’s Clean Development Mechanism (CDM) created a market
for emissions offsets from developing countries, the purpose being two-fold: to help Annex
I countries fulfill their commitments [...]” (emphasis added)

22Apparently he has already used this approach in [Wig84] which he cites; this paper however seems to be unavailable
online.
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The above refers to the Kyoto protocol which has two commitment periods. The European Com-
mission Website writes about the first commitment period:

“In the first period of the Protocol (2008-12), participating countries committed to reduce
their emissions by an average of 5% below 1990 levels.”(emphasis added)

Of the non-technical meanings of commit and commitment listed in the Oxford English Dictionary
item 6 seems to be closest to the usage in climate science:

“6. a. The action or an act of obligating or binding oneself or another to a particular
course of action, policy, etc.; the action of giving an undertaking, either explicitly or by
implication. Also: an undertaking or pledge of this kind.

[...]

b. An act or course of action to which a person is bound or obligated; an obligation,
responsibility; a liability; an engagement.”

There is also recent game-theoretic work concerning a similar notion of conditional commitment
[Hei19].

Deontic logic. Feltus and Petit [FP09] propose a formalisation of a commitment modality in
standard deontic logic (a modal logic concerned with obligation, permission and related concepts).
Their understanding of commitment is described as follows:

“It appears that this option proposition, even if optional to an organizational accountabil-
ity, could remain engaged toward a moral obligation that we call Commitment. This
commitment could be defined as the act of binding itself (intellectually or emotionally)
to a course of actions.”

This seems more compatible with item 7 of the OED:

“7. a. The state or quality of being dedicated to a cause, ideology, activity, etc.; the
action of devoting oneself to something or someone; devotion, dedication.”

5.3 Instances of climate change commitment

As we have seen, there are different instances of climate change commitment, depending on which
forcing scenario is used, which feature of the climate system is of interest and whether an equilibrium
or a transient version of the notion is considered.

Climate Change Commitment: Instances

• with respect to different features of a climate system:

– temperature

– in the hydrological cycle

– extreme weather events

– extreme climate events

– sea level change

• with respect to specific scenarios:

– constant composition

– constant emission

– zero emission

– feasible scenario

• as transient or equilibrium notion

A-24

https://ec.europa.eu/clima/policies/strategies/progress/kyoto_1_en
https://ec.europa.eu/clima/policies/strategies/progress/kyoto_1_en


5.4 Computational structure of climate change commitment

Climate change commitment can be estimated similarly to climate sensitivity by model simulation,
from:

• A model m with state space X and parameters (f, p′) : (T → P )× P ′ where the first component
denotes a forcing

• An initial time t0 : T and state x0 : X

• A numerical method for computing approximations trajectorym(n, x0) = [x0, . . . xn] for a time
discretisation [t0, . . . , tn]

• a reference time tref : T and state xref : X (in which the climate system is not necessarily in
radiative equilibrium)

• a forcing f : T → R.

The main variants of climate change commitment assessments listed in the glossary of the IPCC’s
SR15 [IPC18] differ only in the considered forcings: constant composition, constant emissions,
zero emissions and feasible scenario, defined as functions

constComposition : T → R
constEmissions : T → R
zeroEmissions : T → R
feasible : T → R

which force the components of the system’s state that represent the atmospheric concentration of
CO2 to

– remain constant

– change corresponding to a constant amount of anthropogenic emissions

– change according to zero anthropogenic emissions

– change according to the minimal amount of anthropogenic emissions that is judged as feasible

If another forcing scenario f is used, the idea that commitment quantifies the response of the
climate system when an anthropogenic forcing is stopped or at least does not increase anymore
suggests that f should be a non-increasing function:

∀t, t′ : T , t < t′ ⇒ f(t) ⩾ f(t′)

• a function observe : X → Valo observing the feature of a climate state we are interested in, e.g.
again a function that computes the GMST as in Section 4 or a measure of the sea level

gmst : X → R

sealevel : X → R

• a function that aggregates a trajectory to a representative state (as in Section 4)

aggregateX : List(X) → X

• and a comparison function compareValo : Val2o → Valc that allows us to compare the resulting
values of the feature of interest. Typically Valo and Valc are numerical types and the comparison
function computes the difference of two numbers or their ratio.
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The computation then follows the structure of a comparison experiment. To our understanding the
difference to the CS experiments described in Section 4 is that here the reference state which is used
for comparison is not supposed to be in equilibrium.

We have seen above that Wigley distinguishes between transient and equilibrium commitment ex-
periments. From a theoretical perspective, when integrating a dynamical system indefinitely “until
an equilibrium is reached”, it is not guaranteed that it will ever do so and the computation termi-
nate. In practice however, the computations performed for an equilibrium experiment will rather
correspond to a transient experiment for a number of time steps in which the processes represented
in the model are expected to equilibrate (or otherwise the equilibrium value may be estimated as
for the EECS notion):TODO 23

• transient: To obtain a quantity of transient commitment ccctr : Valc for a reference state xref at
time tref that is reached after nref times steps with respect to a particular time t, which is reached
after ntr time steps in the numerical simulation, compute the trajectories

xstr = trajectory(ntr, x0) and xsref = trajectory(nref, x0)

and then

ccctr = (compareValo ◦map(observe ◦ aggregateState)(xstr, xsref).

• equilibrium: To obtain a quantity of equilibrium commitment ccceq : Valc, we need either
to choose a number neq of computation steps that is sufficiently large to let the model reach
an equilibrium or a function estimateeq : List(X) → X to compute an equilibrium state (as in
Section 4). In the first case, the computation does not differ from the transient case. In the second
case, one computes an equilibrium notion of commitment by first computing the trajectory

xsref = trajectory(nref, x0)

and then

ccceq = (compareValo ◦map(observe))(estimateeq(xs), aggregateX(xsref)).

The commitment experiment suggests to slightly update the comparison experiment as defined in
Eq. (29) to allow the two trajectories that are to be compared to have different lengths:

comparisonExperiment : (List2(X) → Valc)× N2
<N ×X2 → Valc

comparisonExperiment (compare, n, n′, x, x′)

= (compare ◦map(trajectory))((n, x), (n′, x′))

(32)

Then a commitment experiment can be expressed as

commitmentExperiment : N2
<N ×X2 → Valc

commitmentExperiment (n, n′, x, x′)

= comparisonExperiment(compareValo ◦map(observe ◦ aggregateX), n, n′, x, x′)
(33)

23Michel: Maybe rearrange a little?
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Remarks. As for the CS experiments, we could consider non-deterministic variants and different
algorithmic ways of performing measuring, aggregation and comparison operations.
The notion of commitment seeks to quantify how much more climate change is inevitably to be
expected at some moment in time – however it crucially depends on the future forcing that is con-
sidered. This suggests to consider a notion of multi-scenario commitment in which the considered
forcing scenarios represent different policy options, possibly weighted by a judgement about feasibil-
ity. With the expected presence of tipping points in the climate system (see Section 6), one might
also ask under which forcing scenarios present day or future commitment for some climatic variable
entails the crossing of such tipping points. These ideas are explored in TiPES Deliverable 6.3. In
[Bot+21] (part of TiPES D6.2), the idea of commitment is used in a stylised way as criterion for par-
titioning the state space of a dynamical system into desirable and undesirable regions, reminiscent
of Heitzig et al.’s topological classification in [Hei+16] and the planetary boundaries/safe operating
space concept of [Roc+09].

5.5 Selected references

• Ramanathan [Ram88] is the first to use the term “committed” in the sense of climate change
commitment.

• Whetherald et al. [WSD01] consider a notion of warming commitment.

• Wigley’s paper [Wig05] is the source of the terminology and most of the variants of the climate
change commitment notion in the IPCC glossary.

• The glossary of the IPCC report Global Warming of 1.5◦C[IPC18] includes an entry on Climate
change commitment, distinguishing between different instances depending on the forcing scenario
considered.

• Chapter 12 of IPCC AR5[Kri+13] discusses climate change commitment.

• Plattner et al. [Pla+08] use different EMICs to compute the kinds of climate change commitment
discussed by the IPCC.

• Lenton et al. [Len+08; Len+19] use the word “committed” in the context of tipping points and
tipping elements (cf. Section 6.4) but no explanation is provided to what they explicitly mean by
committed.

• Pattyn et al. [Pat+18, Box 2] relate “climate commitment” and tipping points in a study of
Greenland and Antarctic ice sheets at 1.5C warming, without further definition of the notion, but
likely referring to sea level rise commitment in the sense of the IPCC.

• Heitzig [Hei19] uses the notion of conditional commitment in the sense of contractual obligations
in a game-theoretic setting.

• Feltus and Petit [FP09] propose a commitment modality for deontic logic.

6 Abrupt Change, Tipping Point, Tipping Element

This section is concerned with notions related to abrupt changes in the Earth system, in particular
tipping point and tipping element.

Definitions. The IPCC glossary entries provide the following definitions (cf. Appendix I.6):

• an abrupt change in a system is a change that “takes place substantially faster than the rate of
change in the recent history of the affected component of a system”

• if the “abrupt change occurs because the system state actually becomes unstable, such that the
subsequent rate of change is independent of the forcing” it is referred to as tipping point
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• A tipping point is “defined as a critical threshold beyond which a system reorganizes, often abruptly
and/or irreversibly”

• where a “perturbed state of a dynamical system is defined as irreversible on a given timescale, if
the recovery from this state due to natural processes takes substantially longer than the timescale
of interest” (emphasis added)

This description of abrupt change corresponds to the definition given in a 2002 National Research
Council (NRC) report on “abrupt climate change” [BC+02]:

Abrupt climate change

Definition from [BC+02, p.14]:

“Technically, an abrupt climate change occurs when the climate system is forced to cross
some threshold, triggering a transition to a new state at a rate determined by the climate
system itself and faster than the cause.” (emphasis added)

It should be noted that the usage of “state” in the above descriptions apparently differs from how we
have used it in the previous sections. Here “state” rather seems to refer to a region of the system’s
state space which contains states that are qualitatively distinct from the states in other regions. For
a system with state space X in our sense, such a region R ⊂ X could be described with a predicate
P : X → Prop such that for all states x : X,

x ∈ R ⇔ P (x).

A possible terminology for such qualitatively different regions of the state space could be to consider
them as macro states, while the individual elements of the state space of a system could be referred
to as micro states.

Example 6. Alley et al. [All+03] illustrate the idea of abrupt change by the concrete example
of flipping a canoe, while introducing the notions of trigger, amplifier, globaliser and source of
persistence as typical ingredients that bring about such changes after crossing a threshold:

“Systems exhibiting threshold behavior are familiar. For example, leaning slightly over
the side of a canoe will cause only a small tilt, but leaning slightly more may roll you
and the craft into the lake. An abrupt change, of a canoe or the climate, requires a
trigger, such as you leaning out of a canoe; an amplifier and globalizer, such as the
friction between you and the canoe that causes the boat to flip with you; and a source of
persistence, such as the resistance of the upside-down canoe to being flipped back over.”
(emphasis added)

Alley et al. also point out that

“Such large and rapid threshold transitions between distinct states are exhibited by
many climate models, including simplified models of the oceanic thermohaline circulation
[Sto61], atmospheric energy-balance models [Sel69], and atmospheric dynamical models
exhibiting spontaneous regime changes [Lor63].” (citations adapted)

Kuehn [Kue11] formalises a notion of critical transition using the theory of slow-fast dynamical
systems. He lists the following attributes of critical transitions (citing [Sch+09]):

• occurrence of an abrupt qualitative change in the system

• the change occurs rapidly relative to the regular system dynamics

• the system crosses a special threshold near a transition

• the new state of the system after the transition is “far away” from its previous state.
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Ashwin et al.[Ash+12] point out that the more recently popularised notion of tipping point is related
to a much older question in climate science:

“The recent interest in tipping points is related to a long-standing question in climate
science: to understand whether climate fluctuations and transitions between different
‘states’ are due to external causes (such as variations in the insolation or orbital pa-
rameters of the Earth) or to internal mechanisms (such as the oceanic and atmospheric
feedbacks acting on different time scales).”

In the following, we will briefly address abrupt changes in paleo data, stability and tipping in
climate models and the study of different kinds of tipping behaviour in deterministic and stochastic
dynamical systems.

6.1 Abrupt Changes in Time Series

The probably simplest example of a “regime change” is the transition between “warm” and “cold”
states of the Earth between greenhouse periods (in which no continental glaciers exist) and glaciations
(ice ages, “Snowball Earth”) with an ≈ 100, 000 yr periodicity documented in proxy records [Sha00].
Very prominently, the notion of abrupt change in time series of paleo records is used for events that
occurred during glacial or interglacial periods (colder or warmer periods within a glaciation). Alley
et al. [All+03] describe such changes as follows:

“For example, global-mean temperature changes of perhaps 5◦C to 6◦C over ice-age cycles
[Bro02] are generally believed to have resulted from small, globally averaged net forcing
[All+03, elaboration (5)]. More surprisingly, regional changes over 10 years without
major external forcing were in many cases one-third to one-half as large as changes over
the 100,000-year ice-age cycles [Bro02; Sto00].” (citations adapted)

and

“Regional climate changes of as much as 8◦ to 16◦C [Sto00; Sev+98] occurred repeatedly
in as little as a decade or less” (citations adapted)

Example 7. Dansgaard-Oeschger (D-O) events. The first concrete evidence that the climate system
has undergone abrupt changes in the past was found in Greenland ice core records [Dan+82; Dan+84;
Oes+84; Dan+93; Ank+93] in the 1980s. Stocker [Sto00] writes:

“The most detailed and continuous information about climate variability comes from the
Greenland ice cores (Fig. 4). Hans Oeschger [Oes+84], Willy Dansgaard [Dan+84] and
colleagues were the first to recognise the climatic significance of short interstadials (warm-
ing events) during the last glacial period; they were numbered consecutively [Dan+93]
and later named ‘Dansgaard/Oeschger Events [BD89] (see Fig. 5). All events exhibit
a striking similarity in their temporal evolution: cooling extends generally over many
centuries to about 3 kyr, while warming is abrupt and occurs within years or decades.
This suggests that one common mechanism may be responsible for these climate swings.
The recurrence time for the shorter D/O events is of the order of 1000 years.”
(citations adapted, figure references for the original paper)

Similar recurring oscillations have been found in other records:

• Heinrich events are recognised as sequences of iceberg discharges that left [ice rafted?] [debris?]
in the North Atlantic [Hei88; Bro+92; Bon+93]/ They are linked to Antarctic Warming Events
[WFR09] and thought to be linked to the D-O events

• Bond events are climate fluctuations in Holocene records that have a much smaller amplitude
than D-O events [Bon+97]
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Section 4.1 of [Sto00] provides an overview of “abrupt climate change documented” in paleo records.
These proxy records are considered as evidence that there were “repeated, large, abrupt shifts in
Northern Hemisphere climate during the last ice age” [All00; Bar+11]. The implications of such
abrupt shifts for present day climate change started (at the latest) to be discussed around 2000 with
a National Research Council report and several accompanying papers [All00; All+03; BC+02].
There have been diverse efforts to explain the causes of D-O events. The question concerning
internal vs external causes as stated in the Ashwin et al. quote in the introduction of this section
is mirrored in these efforts. To this day, there is no consensus as to the cause of the D-O events,
but it is commonly accepted that they are linked to changes in the location and intensity of water
convection in the North Atlantic, with global impacts both on the atmospheric and the oceanic
circulation measured, among others, in the isotopic signatures of the south Asian monsoon and
Antarctic precipitation.

Methods. Different approaches to paleoclimate modelling in general are described in [Cru12]. A
method to explore the possible underlying dynamics of D-O events is described and employed by
Lohmann and Ditlevsen [LD19]. Ditlevsen et al. [DAS07] explicitly discuss how DO events and
periodicity have been defined in the literature.

6.2 Multi-stability and tipping in conceptual climate models

It was known long before the more recent discussion of tipping points that “large and rapid threshold
transitions between distinct states are exhibited by many climate models” [All+03].
Early examples of such models include those by Stommel [Sto61]24, Budyko[Bud69], Sellers[Sel69]
and Lorenz [Lor63] mentioned in Section 2. These are conceptual models that are studied using
dynamical systems and bifurcation theory [Kuz13; Arn+13]. A model is called multi-stable if it has
more than one stable equilibrium.
Stommel’s model concerns the strength of the thermohaline circulation in the Atlantic and the
qualitative distinction between possible equilibria is whether the circulation is “on” or “off”.25

The Budyko and Sellers model are EBMs modelling the Earth’s radiative fluxes at the top of the
atmosphere. An early stability study of such a model was conducted by Ghil [Ghi76]. Another
simple EBM in which the number of equilibrium states depends on the value of a certain parameter
was proposed by Fraedrich[Fra79] and extended to a stochastic model by Sutera[Sut81].
Prototypically, such “large and rapid threshold transitions” can be explained by the presence of
bifurcations in the model: a bifurcation occurs “when a small smooth change to a parameter (or
parameters) of a system causes a sudden qualitative or topological change to its behaviour” [Len13],
e.g. the set of equilibrium solutions of the system changes. However, not all forms of tipping point
behaviour are caused by a bifurcation. Lenton writes [Len13]:

“There are [...] several mathematically distinct potential sources of tipping point behavior
(where a small change gives rise to a large response in a system).”(emphasis added)

and defines tipping point as follows:

Tipping Point

Definition following [Len13]:

A tipping point is a point at which a small perturbation can cause a qualitative change
in the future state of a system.

The formulation “the future state” seems again to refer to a region of the state space.

24The variant of this model discussed in Examples 1 and 4 exhibits the same multi-stability.
25According to the appendix of [Mar00], Stommel’s 1961 model “went virtually unnoticed for 25 years” while

“in 1982 another box model was independently proposed” (the Rooth model [Roo82]) “that explained how a two-
hemispheric THC [...] might become unstable”. Finally, it “was extensively applied to the steady-state pole-to-pole
circulation” by Marotzke [MW91; Mar94] and Rahmstorf [Rah96].

A-30



Different causes of tipping. In the literature, different kinds of tipping point behaviour are
considered which allow to classify critical transitions by their cause. To our knowledge, the following
have been discussed:

Classification of Tipping

• B-tipping: bifurcation-induced [Ash+12]

• N-tipping: noise-induced [Ash+12]

• R-tipping: rate-dependent [Ash+12] (e.g. the “compost-bomb instability” [Wie+11])

• S-tipping: shock-induced [HF20]

• P-tipping: phase-sensitive [ATW21]

B-tipping may occur in a dynamical system m with parameters of type P for which a critical value
pcr : P exists at which the number or stability of equilibrium solutions of the system changes.
When the value of this parameter changes due to a forcing f : T → P 26 such that the critical value
is crossed, the trajectories of the forced system may pass through states that approach different
equilibrium solutions before and after the crossing of the critical value. These different equilibrium
solution may in turn correspond to very different observations.

N-tipping may occur in stochastic dynamical systems with multiple equilibrium solutions when noise
can cause a trajectory to transition between two states which are attracted by different equilibrium
solutions.

R-tipping may occur if such a transition between states leading to different equilibria is triggered
when the forcing exceeds a critical rate of change.

S-tipping may occur if such a transition between states leading to different equilibria can be caused
by a large perturbation (a shock or extreme event) in the forcing.

Finally, P-tipping may occur in cyclic systems in which the possibility of transitioning to a qualita-
tively different state space region may depend not only on the crossing of a critical parameter value
but also on the current phase of the cycle.

Ashwin et al. [Ash+12] show that dynamical systems can exhibit B-, N- and R-tipping behaviour
independently or in combination. A simple EBM, the Faedrich-Sutera model [Fra79; Sut81], is shown
by Ashwin et al. to exhibit B-, N- and R-tipping.

6.3 Tipping in complex climate models

With the increasing evidence that thresholds for climate tipping points could be crossed as conse-
quence of anthropogenic forcing, concerns have arisen that state of the art climate models may be
“too stable”: if they are unable to adequately capture abrupt changes as observed in paleo data,
they might not reliably predict abrupt changes in the near future either [Val11]. This concern links
to the key question stated in the TiPES proposal for WP2: “Are our models too stable?”.
In a recent review article Brovkin et al. [Bro+21] state that

“For Earth system modellers, the main task is the further improvement of their models
and coupled atmosphere-ocean-biosphere-cryosphere processes. Good progress is being
made with Earth System Models[Fla11]; they are capable of simulating some abrupt
changes, especially in the cryosphere, during the past century and in future projec-
tions[Dri+15]. However, they are challenged by attempts to reconstruct abrupt events

26and at each time t : T the trajectory of the system is thus determined by mf(t)
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that are well documented from the past, including meltwater pulses due to ice sheet col-
lapses[BHD10], the rapid release of CO2 during deglaciation[Mar+14] and abrupt climate
and vegetation changes in North Africa during the termination of the AHP[Dem+00].”
(citations adapted from the paper)

This provides motivation for the objectives of TiPES WP2: Assess stability for various ESMs and
EMICs (see box on climate models) and facilitate evaluation of model behaviour relative to proxy
data prepared by WP1. ▶ TiPES

Links to
Objectives 2.1,
(2.2), 2.36.4 Tipping Points and Tipping Elements

While the notion of tipping point (TP) 27 in the sense of abrupt change already appeared earlier, the
notion of tipping element (TE) in the Earth’s climate system was introduced in Lenton et al.’s paper
[Len+08] (following Lenton and Schellnhuber’s commentary [LS07]). Roughly, a tipping element is
a subsystem of the Earth system that “may pass” a tipping point. Being a TE is a mathematical
property of a dynamical system.
However, Lenton et al. restrict their focus to a class of such subsystems which they judge as policy-
relevant. Thus, the definition of policy-relevant TEs consists of two parts: one part defining mathe-
matical properties that a TE must possess, and one part with subjective conditions. The latter might
be chosen according to what a policy-maker deems relevant and might be seen as value judgements.
The authors point out that in previous literature28 , “abrupt changes” were described as occurring

“when the climate system is forced to cross some threshold, triggering a transition to a
new state at a rate determined by the climate system itself and faster than the cause”

and consider this a case of a bifurcation with an implicit focus on equilibrium properties and implying
“some degree of irreversibility”. They intend to give a definition that is broader than the above:

“(i) we wish to include nonclimatic variables; (ii) there may be cases where the transition
is slower than the anthropogenic forcing causing it; (iii) there may be no abruptness, but
a slight change in control may have a qualitative impact in the future; and (iv) for several
important phase changes, state-of-the-art models differ as to whether the transition is
reversible or irreversible (in principle).”

The paper then gives a description of when a component of the Earth system is considered a tipping
element exhibiting a tipping point. For a ”full formal definition”, the authors point to their supple-
mentary material Appendix 1, ”Formal Definition of a Tipping Element and its associated Tipping
Point”. We revisit the formal definition below. An informal short definition following the one given
in the main paper is: 29

Tipping Element

Let Σ be a subsystem of the Earth system associated with a specific region or collection of regions
of the globe and at least subcontinental in scale (length scale of order ≈ 1000km).

Σ is called a tipping element if

• the control parameters of the system can be combined into a single control of type P and

• there exists a critical control value ρcr : P

27Lenton et al. do however not cite a scientific paper for this notion but the book by Gladwell [Gla00] that popularised
the notion of “tipping point”. Discussions and critical assessments concerning the usage of the “tipping point” notion
in climate science can be found in [RN09; Rus11; Rus15; VHS18].

28citing [BC+02] as in the introduction of this section
29The notions “control parameter” and “control value” can simply be understood as “parameter” and “parameter

value”. We conjecture that they are used to indicate that the the parameter values in the systems they are interested
in are influenced by policy decisions, and thus subject to being controlled.

A-32

https://www.pnas.org/content/pnas/suppl/2008/02/07/0705414105.DC1/05414Appendixes.pdf
https://www.pnas.org/content/pnas/suppl/2008/02/07/0705414105.DC1/05414Appendixes.pdf


such that any significanta deviation of the control value from ρcr leads to a qualitative change in the
value of a crucial system feature after some observation time, measured wrt a reference value of the
feature at the critical value.

awhere a deviation is considered as “significant” if it is large relative to deviations caused by internal
variability of the system

Interestingly, the definition does not explicitly use the notion tipping point. The informal introduc-
tion to the paper states

The tipping point is the corresponding critical point – in forcing and a feature of the
system – at which the future state of the system is qualitatively altered.

The supplementary material of [Len+08] states (on p.3, following the formal definition in which the
notion tipping point does not occur)

[...] our definition of a tipping element and its associated tipping point at the critical
value

which seems to indicate that the critical value is considered as the tipping point. This understanding
is confirmed in [Len12]:

“In this definition [Len+08]. the critical threshold (ρcr) is the tipping point, beyond
which a qualitative change occurs.”

In Table 1 of [Len+08], the different TEs are classified with respect to properties of the dynamical
systems describing them:

Classification of Tipping Elements

A tipping element is classified by the

• feature of interest of the system with direction of change (increase or decrease)

• control parameter(s)

• critical value(s)

• transition timescale

• global mean warming at which the critical value might be reached

• key impacts

In this definition, the first four items are related to the mathematical definition of TEs, while the
last two contain additional information that may help to judge the policy relevance of a TE.
Based on their criteria, Lenton et al. identified the following subsystems as instances of their defini-
tion of tipping elements in the Earth system [Len+08, Table 1]:30 ▶ TiPES

Link to Objec-
tives 1.3, 3.1,
3.2, 3.3, 3.5

Policy-relevant potential Tipping Elements: Lenton et al. Examples

• Arctic summer sea ice ♠
• Greenland ice sheet (GIS) ♠
• West Antarctic ice sheet (WAIS) ♠
• Atlantic thermohaline circulation (THC ) ♠
• El Niño-Southern Oscillation (ENSO)

30(♠ marks TEs that are particularly in the focus of TiPES)
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• Indian summer monsoon (ISM ) ♠
• Sahara/Sahel and West African monsoon (WAM )

• Amazon rainforest ♠
• Boreal forest

Example 8. [Len+08, Table 1] characterises the THC as tipping element by the following data:

• feature of the system: amplitude of the overturning stream function, decreasing

• control parameter: freshwater input to the North Atlantic

• critical value: +0.1–0.5 Sv

• transition timescale: 100 yr (gradual)

• expected at global mean warming: +3–5 ◦C

• key impacts: regional cooling, sea level, ITCZ shift31

Lenton et al. also analysed some potential tipping elements which however did either not fulfil one of
their TE criteria or there was not sufficient data at the time of writing and further research would be
required. To our knowledge, the latest update of the assessment at the time of writing is presented
in [McK+; Arm+].

6.5 Mathematical definition.

A mathematical definition of the notion tipping element is given in the supplementary material
of [Len+08]. The formal framework in which the definition is stated is apparently considered as
standard and not introduced in detail. The following is how we understand the essence of the
definition translated to the notation of the current document:

Being a tipping element is a property of a subsystem Σ of the climate system. The following data is
needed to represent Σ:

• a model of Σ with state space X such that forcing is represented by one time-dependent parameter
of type T → R (thought of as control path for the system). 32

• a start time (thought of as “now”) t0 : T

• an initial state x0 : X

• for each control path p : T → R the function mp : T → X defined by the model (with t0 and x0)

Then Σ is a tipping element iff there exist

• a system feature of interest given by a function 33

F : X → R

• an “ethical” time span TE : T (TE > 0)

31The Intertropical Convergence Zone is the tropical rain belt where most of the rain on Earth falls [ABS16].
32The codomain type of the forcing, and similar for the system feature F below, is not explicitly stated by Lenton

et al. Since it must be possible to add and subtract values of these types, to take their absolute value and to compare
them, we used R as a reasonable choice. But the original definition might be intended to be more general such that
any type with the necessary structure could be used.

33In [Len+08] this is said to be a projection from high-dimensional state space onto the component of interest. It
is similar in spirit the function observe we used in the previous sections.
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• a “critical” time tcr : T (tcr < t0 + TE)

• a “critical” control path pcr : T → R

• an “exceedance time” TR : T (TR < t0 + TE − tcr)

• a value δ : R describing a small variation of the control value (δ > 0)

• a reference control path pref : T → R
such that ∀t ∈ [t0, t0 + TE ], pref(t) < pcr(tcr)
and ∀t ∈ [tcr, tcr + TR], |pref(t)− pcr(tcr)| < δ/2

• a time scale Tv to filter variability (Tv ≪ TE)

• a value F̂ : R F̂ > 0
that expresses a qualitative change in the value of the feature F

such that

I. Every control path which over the ethical horizon [t0, t0 + TE ] is in the δ/2 neighbourhood of pref
and does not exceed pcr(tcr), compared to the reference path only leads to small changes (relative
to F̂ ) of the value of the feature F averaged over Tv-windows in the interval [tcr, t0 + TE ]:

(∀t ∈ [t0, t0 + TE ], | p(t)− pref(t)| < δ/2 ∧ p(t) < pcr(tcr))

=⇒
∀t ∈ [tcr, t0 + TE ], |⟨F ⟩t(mp)− ⟨F ⟩t(mpref

)| ≪ F̂

II. Any control path p : T → R that exceeds the critical value ρcr by δ at least in the interval
[tcr, tcr + TR], leads within [tcr, t0 + TE ] to the observation of a qualitative change ⩾ F̂ relative to
its development under the reference path pref:

(∀t ∈ [tcr, tcr + TR], p(t) ⩾ pcr(tcr) + δ)

=⇒
∃T ∈ [tcr, t0 + TE ], ⟨F ⟩T (mp)− ⟨F ⟩T (mpref

) ⩾ F̂

where ⟨F ⟩t(x) : R (with x : T → X) denotes the Tv-moving average of F ◦ x at time t : T . 34

Lenton et al. remark that this definition simplifies if TR and TE are long enough to let the system
reach an equilibrium. They say that the system is now to be assumed as autonomous, which we
understand in the sense that now the model is not parameterised by a time-dependent forcing but
by a constant control parameter. Denoting the equilibrium value of the system feature F reached
by the system with a control parameter ρ : R by Feq(mconst(ρ)) : R35, they define:
Σ is a tipping element if there exists a control parameter with a critical value ρcr : R such that

|Feq(mconst(ρcr+δ))− Feq(mconstρcr)| ⩾ F̂ .

For reference, we also recall the definition given by Lenton et al. to define under which conditions
a tipping element is considered as policy-relevant.
A tipping element Σ as defined above is called a policy-relevant tipping element, iff the following two
conditions are fulfilled:

34The exact definition of ⟨F ⟩ is not given in the paper, but we would expect

⟨F ⟩t(x) =

∫ t+Tv
2

t−Tv
2

x(t) dt

Tv
.

35where const(ρ) : T → R is the constant function that returns ρ for any input
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III. the development of the control path within a political time horizon TP ≈ 100 yrs (driven by human
interference) determines that a critical state will be reached at some point within TE . “This may
either be the case if the critical state is reached already within the political horizon, or if it would
be reached at a later point in time in the absence of policies enacted during the political horizon
to prevent the system from reaching its critical state.”

IV. the qualitative change F̂ of the value of the system feature F “could significantly affect human
welfare on at least a sub-continental scale, or could compromise the overall mode of operation of
the Earth system, or would entail the loss of a unique value of the biosphere”.

Lenton et al. suggest the following concrete values or rules for the choice of Tv, TE , δ and F̂ :

• Tv ≈ 10 yrs
(“A reasonable choice for the time scale to filter variability in the system feature F [...] assum-
ing that higher-frequency variations [...] are not relevant for the assessment whether or not a
qualitative change F̂ has occurred”)

• δ ≈ 0.2◦C “for the particular case of annual global mean temperature”

• TE ≈ 1000 yrs “beyond which changes in the Earth system may not matter for current policy
considerations”

• “F̂ should be determined by considering associated impacts that fulfil requirement IV” or more
general F̂ should be “significantly larger than the standard deviation of natural variability” of the
feature F on the time scale Tv

Remarks. While Tv, δ, TE and F̂ are existentially quantified in the definition of TE, the latter
recommendations concerning the choice of concrete values for these variables suggest to restrict
them to fixed values. To our understanding, the definition in this form has the advantage that it
first describes the notion of TE in a purely mathematical sense which is applicable to a dynamical
system independently of any physical and/or political interpretation. The policy-relevant part of the
definition then restricts the class of TEs a posteriori. However, this approach makes the definition
also rather difficult to parse. Maybe a simplified version of policy-relevant TE could instead be
parameterised by F , TE and F̂ as political parameters and Tv, δ as physical parameters? Then a
TE with respect to (TE , F, F̂ ), (Tv, δ) would be witnessed by choices of tcr, pcr, TR, pref that fulfil the
coherence conditions and conditions I+II.

Another possibility to make the definition of TE more readable might be to introduce predicates like
Near, Exceeds, FarAway etc. that describe the properties for control paths and trajectories used in
conditions I+II.

6.6 Selected references

• Early multi-stable models: [Sto61], [Sel69], [Lor63], [Bud69]

• Early papers concerning D-O events: [Dan+82; Dan+84; Oes+84; Dan+93; Ank+93]

• Stocker [Sto00] gives an extensive overview of evidence for abrupt climate change in paleo records.

• Early papers addressing abrupt climate change more generally: [All00; All+03; BC+02]

• The original paper introducing the notion of tipping element is [Len+08]. A recent “updated
assessment” of TEs is [Arm+].

• Different causes for tipping are introduced and studied in [Ash+12], [HF20], [ATW21].

• Kuehn [Kue11; Kue13] formalises the notion of critical transition in the framework of fast-slow
systems.
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• Valdes [Val11] discusses whether state of the art complex climate models are “too stable”.

• The EU Horizon 2020 project COACCH has studied the potential impacts of climate and socio-
economic tipping points for Europe [Gin+18; Trö+17].

• Recent work on “positive” non-climate tipping points: [Len20; Win+20; SL21]

• Russill et al. [RN09; Rus11; Rus15; VHS18] critically assess the usage of “tipping point” as
generating metaphor in climate change communication.

• Lately there has been much interest in possible tipping cascades, e.g. [Krö+20; Loh+21; Klo+21;
Bro+21; Wun+21].

7 Early Warning Signal

The observation that the climate system has undergone abrupt transitions in the past does not
only trigger the question whether it might do so in the future, potentially as a consequence of
human behaviour. It also suggests to ask whether there are ways to predict (and if possible prevent)
imminent abrupt changes. The question of predictability has already been raised with the first
papers explicitly focusing on abrupt climate change, e.g. in the context of the relation between D-O
events and the thermohaline circulation: Marotzke’s paper [Mar00] includes paragraphs “Would we
Know Were It Happening Today?” and “A Different Brand of Predictability”, and [Sto00] concludes
with the importance of efforts to detect “early signs of sustained thermohaline circulation changes
in the near future”. With respect to ecosystems, the question of the predictability of approaching
critical transitions has been posed even much earlier: Wissel [Wis84] discusses “a universal law for
the characteristic return time near thresholds”:

“(a)[...] we search for a general property of ecosystems which is specific for the neigh-
bourhood of thresholds; (b) [...] we ask if it is theoretically possible to use this property
for the prediction of the position of a threshold”

In climate science, Tziperman [Tzi00] and Knutti/Stocker [KS02] describe the behaviour of the
thermohaline circulation close to an instability threshold (the former based on simulations with a
comprehensive climate model, the latter with a model of intermediate complexity). Consecutively,
a variety of methods is proposed for the detection of approaching critical transitions. An overview
of the proposed methods (illustrated by an application to simulated ecological data) is given in
[Dak+12] (see also below). A more recent discussion on methods can be found in the introduction
of [BBA20].
The notion Early Warning Signal seems to have been introduced by Dakos et al. in [Dak+08]:

“our way to detect slowing down might be used as a universal early warning signal for
upcoming catastrophic change”

and more prominently in Scheffer et al.’s “Early-warning signals for critical transitions” [Sch+09],
in which the authors write

“work in different scientific fields is now suggesting the existence of generic early-warning
signals that may indicate for a wide class of systems if a critical threshold is approaching”

Surprisingly, the notion of Early Warning Signal(EWS) or Early Warning Sign does not seem to
appear in the IPCC glossary as of yet. Recently, Brovkin et al.[Bro+21, Box 1] write about EWS
in their terminology introduction:
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Early Warning Signals (EWS)

“[...] are quantitative indicators of the proximity of a system to a tipping point[Dak+08]. EWS
apply mathematical principles of dynamical systems to Earth system components. EWS could be
measured in one-dimensional space (such as time series of dust deposition in a marine core) using
uni-variate precursors (for example, increasing temporal autocorrelation) or in multi-dimensional
space (such as spatial patterns of vegetation cover) applying spatially explicit precursors” (citation
adapted)

A lot of information on EWS is provided by [Dak+12]) on the EWS Tool Box Website [Dak+]. Dakos
et al.[Dak+12] distinguish between metric-based and model-based methods for detecting EWS. Both
kinds “reflect changes in the properties of the observed time-series” considered as generated by a
stochastic dynamical system

“Metric-based indicators quantify changes in the statistical properties of the time series
[...] without attempting to fit the data with a specific model structure. Model-based
methods quantify changes in the time series by attempting to fit the data to a model
that is based on the general structure of” [the generating model]. “The ultimate goal of
both types of indicators is to capture changes in the ‘memory’ (i.e. correlation structure)
and variability of a time series and to determine if they follow patterns as predicted
by models of critical transitions, while the system is approaching a transition into an
alternative dynamic regime”

Caveats. Based on the example of the D-O events, Ditlevsen et al.[DJ10] point out two important
provisos concerning the hope for detecting approaching abrupt changes by EWS. The first proviso
concerns increased variance and increased autocorrelation as two generic characteristics indicating
the approach of a bifurcation point:

“These two signals are connected, and the detection of only one and not the other cannot
be taken as a sign of an approaching tipping point. This is contrary to what was recently
claimed [Dak+08; Sch+09].” (citations adapted)

The second proviso concerns the D-O events as “most clearly observed transition [...] besides the
glacial-interglacial transitions themselves”. Ditlevsen et al. investigate whether increased variance
and increased autocorrelation can be detected in the NGRIP records [Mem04], arriving at the
conclusion that D-O events are “most probably not generated by bifurcations: They are noise-
induced transitions without early warning signals.”
Subsequent research by Rypdal [Ryp16] and Boers [Boe18] however reports the presence of statistical
EWS for D-O events. Yet it is important to note that not all abrupt changes – e.g. because they are
noise- instead of bifurcation-induced – may be preceded by EWS. And also the possibility of false
positives has to be taken into consideration. As Boers writes [Boe18]:

“The fact that a forthcoming bifurcation implies the presence of EWS does, however,
not exclude the possibility that statistical fluctuations indistinguishable from EWS arise
either by chance or by other mechanisms unrelated to a bifurcation or abrupt transition.”

And the authors of [Kéf+13] point out concerning EWS based on “critical slowing down”:

“ slowing down generally happens in situations where a system is becoming increasingly
sensitive to external perturbations, independent of whether the impeding change is catas-
trophic or not. These results highlight that indicators specific to catastrophic shifts are
still lacking.”

Livina, Ditlevsen and Lenton also address the criticism of [DJ10] by “blind testing” methods of
detecting multiple system states and bifurcations in time series data [LDL12]: Time series data was
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provided by one author who knew the underlying model from which the data was generated, while
the other two authors used different methods to analyse the data, “described the expected properties
and behaviour of the underlying systems and attempted to model the corresponding data”. They
conclude:

“In most cases, the methods successfully detected the number of states in a system, and
the occurrence of transitions between states. The derived models were able to reproduce
the test data accurately. However, noise-induced abrupt transitions between existing
states cannot be forecast due to the lack of any change in the underlying potential.”

Methods. We have seen that the notion Early Warning Signal refers to various statistical indica-
tors for the approach of abrupt transitions in time series (often thought of as induced by bifurcations).
A concrete step-by-step illustration of analysing time series data to detect approaching transitions
is given in [Dak+12]. The data may come from proxy data or observations, or may have been
generated by model simulation. Given a time-series as input, the procedure very roughly consists of

• pre-processing the data to obtain a regular time series, (i.e. there are no missing values and the
data is equally spaced in time) without distorting its statistical properties

• filtering to eliminate non-stationarities in the mean of the time series (as they “can cause spurious
indications of impending transitions”) and detrending to remove e.g. seasonal trends (since they
would “impose a strong correlation structure on the time series”)

• apply one or (better) multiple methods to test the data for the presence of EWS.

– metric-based: compute how certain statistical metrics for the time series, e.g. variance,
autocorrelation, skewness 36 change along the time series;

– model-based: fit the data to a specific kind of model, e.g. a drift-diffusion-jump, a time-
varying AR(p) or a threshold AR(p) model. Properties of the fitted models then can be used
as indicators.

• perform a sensitivity analysis by varying underlying choices of parameters in the previous steps,
e.g. when using a rolling window method by altering the window size or the degree of smoothing
for used in filtering.

• perform a significance test for the obtained results (whether EWS are considered to occur in the
time series or not), especially to avoid false positives (type I errors); how this can be done depends
on which method has been employed to test for EWS.

7.1 Selected references

• Wissel [Wis84] already studied indicators for approaching thresholds for ecosystems.

• Marotzke addresses the question predictability for a possible collapse of the THC [Mar00].

• Early papers suggesting data analysis methods to detect approaching thresholds: [KHP03; HK04;
LL07]

• First papers explicitly using the term “EWS”: [Dak+08; Sch+09]

• Noise-induced abrupt transitions might not be preceded by EWS: [DJ10]; blind testing detection
methods: [LDL12]

• There might also be false positives: EWS before “non-catastrophic” transitions [Kéf+13].

36i.e. how asymmetric the distribution of values of the time series is
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• Kuehn suggests the mathematical theory of deterministic and stochastic slow-fast systems as
providing a natural framework for studying critical transitions and EWS [Kue11; Kue13; Kue15]

▶ TiPES
Line of work
leading to
Objective 5.3

.

• Comparison and robustness testing of methods: [Len+12]

• Recent paper on using spectral analysis to detect more specific EWS that contain more information
about the type of underlying bifurcation: [BBA20]

• EWS in paleo data: [LKL10; Ryp16; Boe18] ▶ TiPES
Line of work
leading to
Objectives
1.1,1.2 and 1.4

8 Toward an ontology

Recapitulating the different objects, notions and computational patterns we have encountered in
this report, we might consider a number of abstract concepts to organise them in the style of an
ontology. In the following we sketch some ideas without being conclusive.
Consider the following two basic classes of objects (parameterised over types I, I1, I2, D, I,Val):

• Sequential data that might be thought of as temporally ordered but potentially distributed in
space (like observation data, proxy records, trajectories of dynamical systems)

SeqDataI,D = I → D

for a strictly ordered index type I and type of data D. An example of this could be a regular
time series T → X or the result of a numerical simulation [x0, . . . , xn] represented as function
N<n → X.

• Producers of sequential data (like physical measurements or models of the climate system) repre-
sented as functions that given some input I return a sequence of data:

SeqDataProducerI,I,D = I → SeqDataI,D.

In the case of measurements the “input” could be collected by sensors and associated to a time-
stamp to produce sequential data for further usage; for a dynamical system, the input could be
an initial time and state, used to produce a trajectory as output.

Note that each SeqData object can be considered as a constant SeqDataProducer.
Given these two base classes of objects, we might consider the following classes of operations:

• Transformations of sequential data

SeqDataTrI1,I2,D,T = List(SeqDataI1,D) → SeqDataI2,D

e.g. various operations on time series like dating, removing biases or stacking.

• Statistical analysis of sequential data

SeqDataStatAnalysisI,D = SeqDataI,D → Val

e.g. computing measures like variance, auto-correlation or simply the expected value.

• Comparison experiments in which, given one or more SeqDataProducer mi and a list of inputs,
the output produced by the mi when applied to the different inputs is compared

ComparisonExperimentI,I,D,Val = List(SeqDataProducerI,I,D)× List(I) → Val

as e.g. seen in the computations of CS and commitment based on comparisonExperiment (Eq. (32))
for the special case in which there is only one SeqDataProducer, namely the climate model.
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Other, more specific classes of experiments may be based on comparison experiments:

• Calibration experiments

CalibrationExperimentI,I,D,Val =

(P → SeqDataProducerI,I,D)× List(P )× I × List(D) → Val

in which, given a family of sequential data producers {mp}p:P , a list of possible parameter values
ps : List(P ), an input and SeqData d : D for validation, for example a ranking of the parameter
values37 is computed by performing comparison experiments between each instance of mp (with
p from ps) and d (considering d as constant SeqDataProducer). The CS-parameter experiment
described in Section 4.1 is an example.

• Perturbation experiments

PerturbationExperimentI,I,D,Val = SeqDataProducerI,I,D × I × (I → I) → Val

in which, given a SeqDataProducerI,I,D m, an input i : I and a function perturb : I → I, a
comparison experiment is performed with [m,m] and [i, perturb(i)] as inputs. The ECS experiment
as instance of perturbExperiment in Section 4.1 is an example.

We have classes of properties

• for sequential data

SeqDataPropI,D = SeqDataI,D → Val

• for sequential data producers

SeqDataProducerPropI,I,D = SeqDataProducerI,I,D → Val

where for logical properties Val = Prop or Val = B; for quantitative properties Val is a numerical type
like R, on which standard arithmetic operations are defined and which carries additional structure
like an order ⊑: Val×Val → Prop and a metric compare : Val×Val → R.
To represent different kinds of uncertainties, we may consider monadic generalisations of the above,
for example

MSeqDataI,D,M = I → M(D)

represented as functions that given some input I return a monadic value of data (e.g. a probability
distribution). A generalised form of data producer could in turn produce monadic values of monadic
sequential data:

MSeqDataProducerI,I,D,M = I → M(MSeqDataI,D,M ).

where M is the functor of a monad.
In the examples mentioned above, we have already seen how the climate sensitivity and commitment
experiments fit in this abstract framework. What about the other notions we have discussed?
We suggest that

• the different variants of climate sensitivity and climate change commitment discussed in this report
are quantitative properties of sequential data producers;

• having abrupt changes or having EWS are logical properties of sequential data;

• being a tipping element and having a tipping point are logical properties of sequential data pro-
ducers (which overlap in the Lenton et al. definition);

• a tipping element is a sequential data producer that has the above two properties and which more-
over can produce data having abrupt changes. It is not necessary that it can produce sequential
data having EWS.
37There are many options what exactly to compute as output: One may just compute one “best” parameter

configuration according to some metric, or the best within configurations within a certain range etc.
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9 Conclusion

Having reviewed a number of notions relevant for tipping point research, what have we learned?
The object that one is ultimately interested in studying is the “real” climate system. As we have
seen, climate sensitivity, climate change commitment and abrupt changes concern in a broad sense
the response of the climate system or its subsystems to interventions:

• climate sensitivity is an idealised metric for the temperature increase resulting from a doubling of
the CO2 concentration of the atmosphere in an equilibrium state

• climate change commitment is a metric for delayed responses like temperature increase or sea level
rise after forcing is stopped or at least not increased anymore in a non-equilibrium state

• abrupt change refers to a qualitative change of the system’s behaviour in response to comparatively
small changes in forcing.

Since the climate system is not amenable to systematic and repeatable empirical experiments, these
properties can only be studied by analysing observations and studying representations of the system
or its subsystems. For this, time series and dynamical systems play a crucial role, and there are
generic techniques that are used to study their properties. What we called comparison experiment
in Sections 4 and 5 is such a generic technique, and similarly the fitting of parameterised models to
time series of observations. The methods that are used to study the notions we discussed in this
report arise as instances of such generic techniques, and the notions might be studied in more than
one way, as we have e.g. seen for climate sensitivity. In the preparation of this report and from
discussions in the context of the TiPES project, our impression was that it is difficult to attach
unambiguous “meanings” to these notions. This has been noted before. Russill [Rus15] reviews
origins, precursors, and debates around the usage of the “tipping point” in the discourse about
climate change. He points out that besides the framework of dynamical systems theory, the usage
of tipping point in the climate literature is also related to the scientific community inspired by the
Gaia theory [Lov72]. Still following [Rus15], the tipping point is a metaphor that has the property of
being “generative”: its cultural resonance is intended to “shift popular heuristics for environmental
change”. However, the multiple usages of the “tipping point”, stemming from different communities,
come at the cost of semantic confusion (see below).
For the notions of abrupt change, TP and EWS, in particular, the usages seem to be evolving. In
reviewing the literature, our impression was that descriptions in the first papers on abrupt climate
change, tipping and EWS seem inspired by bifurcations in dynamical systems without necessarily
saying this explicitly [RN09]. In the line of work by Lenton et al. based on [Len+08], TPs are
however understood in a more liberal way, as seen in Section 6.4. This is e.g. discussed in [Len12,
pp.11-12] and, again, disagreements arising from different perceptions of what is meant by TP are
called semantic confusion in [Dua+12]. Similarly, following [Dak+08], the term EWS sometimes
seemed to be used as a synonym for critical slowing down exhibited by dynamical systems when
approaching a bifurcation [DJ10]. But other indicators, also for different kinds of tipping, have been
proposed and also called EWS [Dak+12; RS16; Ma+22].
For this report, we have collected informal definitions and classification information that might be
used as semantic annotation for different instances of climate sensitivity and commitment experi-
ments, tipping elements and early warning signs. We have furthermore suggested generic schemes of
which CS and commitment experiments are instances and discussed Lenton et al.’s formal definition
of TEs. Finally, we have suggested an abstract perspective that may help to organise tipping notions
in the style of an ontology.
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I IPCC Glossary entries

(The AR6 WGI glossary is not yet officially approved, but we use it here to make sure to include
the most up-to-date information.)

I.1 Concerning climate models

What the IPCC AR6 WGI Glossary tells us about climate models:

IPCC Glossary: Climate model

A qualitative or quantitative representation of the climate system based on the physical, chemical and
biological properties of its components, their interactions and feedback processes and accounting for some
of its known properties. The climate system can be represented by models of varying complexity; that
is, for any one component or combination of components a spectrum or hierarchy of models can be
identified, differing in such aspects as the number of spatial dimensions, the extent to which physical,
chemical or biological processes are explicitly represented, or the level at which empirical parametrisations
are involved. There is an evolution towards more complex models with interactive chemistry and biology.
Climate models are applied as a research tool to study and simulate the climate and for operational
purposes, including monthly, seasonal and interannual climate predictions. See also Chemistry-climate
model, Earth system model (ESM), Earth system model of intermediate complexity (EMIC), Energy
balance model (EBM), Simple climate model (SCM), Regional climate model (RCM), Dynamic global
vegetation model (DGVM), General circulation model (GCM) and Emulators.

IPCC Glossary: Process-based model

Theoretical concepts and computational methods that represent and simulate the behaviour of real-world
systems derived from a set of functional components and their interactions with each other and the system
environment, through physical and mechanistic processes occurring over time.

IPCC Glossary: Integrated assessment model (IAM)

Models that integrate knowledge from two or more domains into a single framework. They are one of the
main tools for undertaking integrated assessments. One class of IAM used in respect of climate change
mitigation may include representations of: multiple sectors of the economy, such as energy, land use and
land use change; interactions between sectors; the economy as a whole; associated greenhouse gas (GHG)
emissions and sinks; and reduced representations of the climate system. This class of model is used to
assess linkages between economic, social and technological development and the evolution of the climate
system. Another class of IAM additionally includes representations of the costs associated with climate
change impacts, but includes less detailed representations of economic systems. These can be used to
assess impacts and mitigation in a cost-benefit framework and have been used to estimate the social cost
of carbon.

IPCC Glossary: Simple climate model (SCM)

A broad class of lower-dimensional models of the energy balance, radiative transfer, carbon cycle, or
a combination of such physical components. SCMs are also suitable for performing emulations of
climate-mean variables of Earth system models (ESMs), given that their structural flexibility can capture
both the parametric and structural uncertainties across process-oriented ESM responses. They can also
be used to test consistency across multiple lines of evidence with regard to climate sensitivity ranges,
transient climate responses (TCRs), transient climate response to cumulative emissions (TCREs) and
carbon cycle feedbacks. See also Emulators and Earth system model of intermediate complexity (EMIC).
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IPCC Glossary: Earth System Model (ESM)

A coupled atmosphere–ocean general circulation model (AOGCM) in which a representation of the carbon
cycle is included, allowing for interactive calculation of atmospheric carbon dioxide (CO2) or compatible
emissions. Additional components (e.g., atmospheric chemistry, ice sheets, dynamic vegetation, nitrogen
cycle, but also urban or crop models) may be included. See also Earth system model of intermediate
complexity (EMIC).

IPCC Glossary: Earth system Model of Intermediate Complexity (EMIC)

Earth system models of intermediate complexity (EMIC) represent climate processes at a lower resolution
or in a simpler, more idealised fashion than an Earth system model (ESM).

IPCC Glossary: Energy balance model (EBM)

An energy balance model is a simplified model that analyses the energy budget of the Earth to compute
changes in the climate. In its simplest form, there is no explicit spatial dimension and the model then
provides an estimate of the changes in globally averaged temperature computed from the changes in
radiation. This zero-dimensional energy balance model can be extended to a one-dimensional or two-
dimensional model if changes to the energy budget with respect to latitude, or both latitude and longitude,
are explicitly considered.

IPCC Glossary: General circulation model (GCM)

A numerical representation of the atmosphere-ocean-sea ice system based on the physical, chemical and
biological properties of its components, their interactions and feedback processes. General circulation
models are used for weather forecasts, seasonal to decadal prediction, and climate projections. They are
the basis of the more complex Earth system models (ESMs). See also Climate model.

IPCC Glossary: Regional climate model (RCM)

A climate model at higher resolution over a limited area. Such models are used in downscaling global
climate results over specific regional domains.

IPCC Glossary: Dynamic global vegetation model (DGVM)

A model that simulates vegetation development and dynamics through space and time, as driven by
climate and other environmental changes.

IPCC Glossary: Emulation

Reproducing the behaviour of complex, process-based models (namely, Earth System Models, ESMs) via
simpler approaches, using either emulators or simple climate models (SCMs). The computational efficiency
of emulating approaches opens new analytical possibilities given that ESMs take a lot of computational
resources for each simulation. See also Emulators and Simple climate model (SCM).
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IPCC Glossary: Emulators

A broad class of heavily parametrized models (‘one-or-few-line climate models’), statistical methods like
neural networks, genetic algorithms or other artificial intelligence approaches, designed to reproduce
the responses of more complex, process-based Earth System Models (ESMs). The main application of
emulators is to extrapolate insights from ESMs and observational constraints to a larger set of emission
scenarios. See also Emulation and Simple climate model (SCM).

I.2 Concerning model experiments

IPCC Glossary: Equilibrium and transient climate experiment

An equilibrium climate experiment is a climate model experiment in which the model is allowed to fully
adjust to a change in radiative forcing. Such experiments provide information on the difference between
the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed
to evolve gradually according to a prescribed emission scenario, the time-dependent response of a climate
model may be analysed. Such an experiment is called a transient climate experiment. See also Climate
projection. (AR5, WGI)

IPCC Glossary: Model initialization

A climate prediction typically proceeds by integrating a climate model forward in time from an initial
state that is intended to reflect the actual state of the climate system. Available observations of the
climate system are ’assimilated’ into the model. Initialization is a complex process that is limited by
available observations, observational errors and, depending on the procedure used, may be affected by
uncertainty in the history of climate forcing. The initial conditions will contain errors that grow as the
forecast progresses, thereby limiting the time for which the forecast will be useful.

IPCC Glossary: Parameterisation

In climate models, this term refers to the technique of representing processes that cannot be explicitly
resolved at the spatial or temporal resolution of the model (sub-grid scale processes) by relationships
between model-resolved larger-scale variables and the area- or time-averaged effect of such subgrid scale
processes.

I.3 Concerning model simulations/scenarios/pathways

IPCC Glossary: Pathways

The temporal evolution of natural and/or human systems towards a future state. Pathway concepts range
from sets of quantitative and qualitative scenarios or narratives of potential futures to solution-oriented
decision-making processes to achieve desirable societal goals. Pathway approaches typically focus on
biophysical, techno-economic, and/or socio-behavioural trajectories and involve various dynamics, goals,
and actors across different scales. See also Scenario storyline (under Storyline), Mitigation scenario (under
Scenario), Baseline scenario (under Scenario) and Stabilisation (of GHG or CO2-equivalent concentration).

1.5◦Cpathway A pathway of emissions of greenhouse gases and other climate forcers that provides an
approximately one-in-two to two-in-three chance, given current knowledge of the climate response, of
global warming either remaining below 1.5◦C or returning to 1.5◦C by around 2100 following an overshoot.
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Representative concentration pathways (RCPs) Scenarios that include time series of emissions and
concentrations of the full suite of greenhouse gases (GHGs) and aerosols and chemically active gases, as
well as land use/land cover (Moss et al., 2010). The word representative signifies that each RCP provides
only one of many possible scenarios that would lead to the specific radiative forcing characteristics. The
term pathway emphasises that not only the long-term concentration levels are of interest, but also the
trajectory taken over time to reach that outcome (Moss et al., 2010).

RCPs usually refer to the portion of the concentration pathway extending up to 2100, for which Integrated
assessment models produced corresponding emission scenarios. Extended concentration pathways describe
extensions of the RCPs from 2100 to 2300 that were calculated using simple rules generated by stakeholder
consultations, and do not represent fully consistent scenarios. Four RCPs produced from Integrated
assessment models were selected from the published literature and are used in the Fifth IPCC Assessment
and also used in this Assessment for comparison, spanning the range from approximately below 2◦C
warming to high (> 4◦C) warming best-estimates by the end of the 21st century: RCP2.6, RCP4.5 and
RCP6.0 and RCP8.5.

• RCP2.6: One pathway where radiative forcing peaks at approximately 3Wm−2 and then declines to
be limited at 2.6Wm−2 in 2100 (the corresponding Extended Concentration Pathway, or ECP, has
constant emissions after 2100).

• RCP4.5 and RCP6.0: Two intermediate stabilisation pathways in which radiative forcing is limited at
approximately 4.5Wm−2 and 6.0Wm−2 in 2100 (the corresponding ECPs have constant concentra-
tions after 2150).

• RCP8.5: One high pathway which leads to > 8.5Wm−2 in 2100 (the corresponding ECP has constant
emissions after 2100 until 2150 and constant concentrations after 2250).

See also Coupled Model Intercomparison Project (CMIP) and Shared socio-economic pathways (SSPs)
(under Pathways).
Shared socio-economic pathways (SSPs) Shared socio-economic pathways (SSPs) have been developed
to complement the Representative concentration pathways (RCPs). By design, the RCP emission and
concentration pathways were stripped of their association with a certain socio-economic development.
Different levels of emissions and climate change along the dimension of the RCPs can hence be explored
against the backdrop if different socio-economic development pathways (SSPs) on the other dimension
in a matrix. This integrative SSP-RCP framework is now widely used in the climate impact and policy
analysis literature, where climate projections obtained under the RCP scenarios are analysed against the
backdrop of various SSPs. As several emission updates were due, a new set of emission scenarios was
developed in conjunction with the SSPs. Hence, the abbreviation SSP is now used for two things: On
the one hand SSP1, SSP2, ..., SSP5 is used to denote the five socio-economic scenario families. On the
other hand, the abbreviations SSP1-1.9, SSP1-2.6, ..., SSP5-8.5 are used to denote the newly developed
emission scenarios that are the result of an SSP implementation within an integrated assessment model.
Those SSP scenarios are bare of climate policy assumption, but in combination with so-called shared
policy assumptions (SPAs), various approximate radiative forcing levels of 1.9, 2.6, ..., or 8.5Wm−2 are
reached by the end of the century, respectively.

IPCC Glossary: Projection

A potential future evolution of a quantity or set of quantities, often computed with the aid of a model.
Unlike predictions, projections are conditional on assumptions concerning, for example, future socio-
economic and technological developments that may or may not be realised. See also Climate projection,
Pathways and Scenario.

A-62



IPCC Glossary: Scenario

A plausible description of how the future may develop based on a coherent and internally consistent set of
assumptions about key driving forces (e.g., rate of technological change (TC), prices) and relationships.
Note that scenarios are neither predictions nor forecasts, but are used to provide a view of the implications
of developments and actions. See also Climate scenario and Regional climate scenario.
Baseline scenario See Reference ScenarioSee Reference scenario (under Scenario).
Concentrations scenario A plausible representation of the future development of atmospheric concentra-
tions of substances that are radiatively active (e.g., greenhouse gases (GHGs), aerosols, tropospheric
ozone), plus human-induced land cover changes that can be radiatively active via albedo changes, and
often used as input to a climate model to compute climate projections.

Emissions scenario A plausible representation of the future development of emissions of substances that
are radiatively active (e.g., greenhouse gases (GHGs) or aerosols), plus human-induced land cover changes
that can be radiatively active via albedo changes, based on a coherent and internally consistent set of
assumptions about driving forces (such as demographic and socio-economic development, technological
change, energy and land use) and their key relationships. Concentration scenarios, derived from emission
scenarios, are often used as input to a climate model to compute climate projections. See also Represen-
tative concentration pathways (RCPs) (under Pathways) and Shared socio-economic pathways (SSPs)
(under Pathways).
Mitigation scenario A plausible description of the future that describes how the (studied) system responds
to the implementation of mitigation policies and measures. See also Pathways, Socio-economic scenario
(under Scenario) and Stabilisation (of GHG or CO2-equivalent concentration).

Reference scenario Scenario used as starting or reference point for a comparison between two or more
scenarios.

Note 1: In many types of climate change research, reference scenarios reflect specific assumptions about
patterns of socio-economic development and may represent futures that assume no climate policies
or specified climate policies, for example those in place or planned at the time a study is carried out.
Reference scenarios may also represent futures with limited or no climate impacts or adaptation, to serve
as a point of comparison for futures with impacts and adaptation. These are also referred to as baseline
scenarios in the literature.

Note 2: Reference scenarios can also be climate policy or impact scenarios, which in that case are
taken as a point of comparison to explore the implications of other features, e.g., of delay, technological
options, policy design and strategy or to explore the effects of additional impacts and adaptation beyond
those represented in the reference scenario.

Note 3: The term business as usual scenario has been used to describe a scenario that assumes no
additional policies beyond those currently in place and that patterns of socio-economic development are
consistent with recent trends. The term is now used less frequently than in the past.

Note 4: In climate change attribution or impact attribution research reference scenarios may refer to
counterfactual historical scenarios assuming no anthropogenic greenhouse gas emissions (climate change
attribution) or no climate change (impact attribution).
Socio-economic scenario A scenario that describes a plausible future in terms of population, gross domestic
product (GDP), and other socio-economic factors relevant to understanding the implications of climate
change. See also Baseline scenario (under Scenario), Mitigation scenario (under Scenario) and Pathways.

IPCC Glossary: Regional climate scenario

A narrative used to describe how the future might unfold for a region (IPCC-TGICA, 2007). These are
often used to guide impact understanding and adaptation efforts. They can include quantitative infor-
mation based on scaled historical data or derived from GCM-based internally consistent future climates.
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See also Climate scenario.

IPCC Glossary: Storyline

A way of making sense of a situation or a series of events through the construction of a set of explanatory
elements. Usually it is built on logical or causal reasoning. In climate research, the term storyline is used
both in connection to scenarios as related to a future trajectory of the climate and human systems or to
a weather or climate event. In this context, storylines can be used to describe plural, conditional possible
futures or explanations of a current situation, in contrast to single, definitive futures or explanations.

Physical climate storyline A self-consistent and plausible unfolding of a physical trajectory of the climate
system, or a weather or climate event, on timescales from hours to multiple decades (Shepherd et al.,
2018). Through this, storylines explore, illustrate and communicate uncertainties in the climate system
response to forcing and in internal variability.

Scenario storyline A narrative description of a scenario (or family of scenarios), highlighting the main
scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

I.4 Concerning climate sensitivity

IPCC Glossary: Climate metrics

Measures of aspects of the overall climate system response to radiative forcing, such as equilibrium
climate sensitivity (ECS), transient climate response (TCR), transient climate response to cumulative CO
2 emissions (TCRE) and the airborne fraction of anthropogenic carbon dioxide. See also Greenhouse gas
emission metric, Climate indicator and Key climate indicators (under Climate indicator).

IPCC Glossary: Climate sensitivity

The change in the surface temperature in response to a change in the atmospheric carbon dioxide (CO2)
concentration or other radiative forcing. See also Climate feedback parameter.

IPCC Glossary: Earth system sensitivity

The equilibrium surface temperature response of the coupled atmosphere-ocean- cryosphere-vegetation-
carbon cycle system to a doubling of the atmospheric carbon dioxide (CO2) concentration is referred to as
Earth System sensitivity. Because it allows ice sheets to adjust to the external perturbation, it may differ
substantially from the equilibrium climate sensitivity derived from coupled atmosphere-ocean models.

IPCC Glossary: Equilibrium climate sensitivity (ECS)

The equilibrium (steady state) change in the surface temperature following a doubling of the atmospheric
carbon dioxide (CO2) concentration from pre-industrial conditions.

Closely related:
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IPCC Glossary: Climate feedback parameter

A way to quantify the radiative response of the climate system to a global surface temperature change
induced by a radiative forcing. It is quantified as the change in net energy flux at the top of atmosphere
for a given change in annual global surface temperature. It has units of Wm−2 ◦C−1.

I.5 Concerning climate commitment

IPCC Glossary: Climate change commitment

Climate change commitment is defined as the unavoidable future climate change resulting from inertia
in the geophysical and socio-economic systems. Different types of climate change commitment are
discussed in the literature (see subterms). Climate change commitment is usually quantified in terms of
the further change in temperature, but it includes other future changes, for example in the hydrological
cycle, in extreme weather events, in extreme climate events, and in sea level.

Constant composition commitment The constant composition commitment is the remaining climate
change that would result if atmospheric composition, and hence radiative forcing, were held fixed at a
given value. It results from the thermal inertia of the ocean and slow processes in the cryosphere and
land surface.

Constant emissions commitment The constant emissions commitment is the committed climate change
that would result from keeping anthropogenic emissions constant.

Zero emissions commitment The zero emissions commitment is an estimate of the subsequent global
warming that would result after anthropogenic emissions are set to zero. It is determined by both inertia
in physical climate system components (ocean, cryosphere, land surface) and carbon cycle inertia. In its
widest sense it refers to emissions of each climate forcer including greenhouses gases, aerosols and their
pre- cursors. The climate response to this can be complex due to the different timescale of response of
each climate forcer. A specific sub-category of zero emissions commitment is the Zero CO2 Emissions
Commitment which refers to the climate system response to CO2 emissions after setting these to net
zero. The CO2-only definition is of specific use in estimating remaining carbon budgets.

I.6 Concerning abrupt climate change

IPCC Glossary: Abrupt change

A change in the system that is substantially faster than the typical rate of the changes in its history.

IPCC Glossary: Abrupt climate change

A large-scale abrupt change in the climate system that takes place over a few decades or less, persists
(or is anticipated to persist) for at least a few decades and causes substantial impacts in human and/or
natural systems.

IPCC Glossary: Tipping element

A component of the Earth System that is susceptible to a tipping point.
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IPCC Glossary: Tipping point

A critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly.

IPCC Glossary: Irreversibility

A perturbed state of a dynamical system is defined as irreversible on a given timescale, if the recovery
from this state due to natural processes takes substantially longer than the timescale of interest.

II TiPES work package objectives

In this appendix we list the objectives of WP1–5 for reference.

WP1: Observation-based analysis of tipping elements

1. To provide the empirical basis to study abrupt climatic transitions that have occurred
in past warm and cold climates, focusing on proxy data synthesis and synchronization
of different records.

2. To derive probabilistic time series representations of proxy records that allow for a math-
ematically rigorous propagation of dating uncertainties to subsequent analysis such as
synchronization and dependency analyses between different records, search for EWS, but
also the model evaluations planned in WP2.

3. To assess interactions between different TEs, and the ecological and societal impacts of
past abrupt climate transitions. This will provide valuable information for estimating
the impacts of potentially similar events due to global warming in the future.

4. To extend existing concepts of statistical EWSs in paleoclimatic proxy records by ad-
vancing the employed statistical estimators and taking into account associated physical
mechanisms. This will provide detailed information regarding the specific subsystems and
statistical characteristics in which EWSs for potential future abrupt transitions should
be searched for.

WP2: Modelling of tipping elements in past climate

1. To assess the climate stability of a suite of state-of-the-art climate models. These are the
EMICs Bern3D, CLIMBER-X, and FAMOUS, as well as the ESMs CESM, HadCM3,
and UKESM1. This goal primarily feeds into TiPES Objective 1.

2. In delivering this assessment on model stability, to ensure that all WP2 work has the
maximum positive impact on, and contribution to, the IPCC process.

3. To implement proxies directly in models to ensure that they can be evaluated against
the WP1 datasets. This will help maintain European leadership in the research area of
ESM isotope code development.

WP3: Modelling of tipping elements in present and future climate

1. To assess the risk of an AMOC shutdown in the near future due to global warming, and
to identify corresponding EWSs from simulations.

2. To quantify the risk that the Amazon rainforest will tip to a savannah state due to global-
warming-induced precipitation changes and due to deforestation, to identify EWSs for
such a transition, and to provide an assessment of the climatological, ecological and
socio-economic impacts of a potential dieback of the Amazon.
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3. To estimate the response of the Indian summer monsoon to various scenarios of regional
and global forcings in order to allow to define safe operating spaces that exclude future
dangerous conditions in the hydroclimatology of the region, and to quantify EWSs of a
potential regime shift of the monsoon.

4. To assess the impacts of TP crossings on a range of relevant climate properties in Europe,
such as the statistics of atmospheric blocking, weather regimes and extremes, to identify
worst case scenarios in this regard, and to establish associated EWS.

5. To constrain the stability and future ice-sheet evolution in the mid-long term of the
Antarctic and Greenland ice sheets, and to identify suitable precursor signals of a future
stability loss.

WP4: Climate sensitivity and response

1. To extend the concept of climate sensitivity in order to systematically allow for state-
dependent feedbacks, a large set of climatic observables, and multiple spatial and tem-
poral scales.

2. To incorporate the effect of TPs in defining climate sensitivity.

WP5: Theoretical underpinning of tipping points

1. To understand the robustness of TPs across the climate model hierarchy.

2. To further develop and apply non-autonomous dynamical systems theory appropriate to
understand climate tipping phenomena in the presence of a variety of GHG emissions
scenarios.

3. To develop and evaluate novel early warning signals (EWS) for non-autonomous climate
problems and associated statistical forecasting and detection tests.
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Abstract

We develop a domain-specific language (DSL) for the specification of decision problems
in the context of tipping point research, on top of a lightweight version the generic Botta
et al. 2017 framework for specifying and solving monadic sequential decision problems. The
aim is to improve accountability in the context of climate policy advice by narrowing the gap
between mathematical problem specification and implementation. This is achieved by using
a programming language based on Dependent Type Theory, in which it is possible to express
specification, implementation and proof that the implementation fulfils certain properties within
the same language.

We extend the Botta et al. theory with generic measures of responsibility and a syntax to
transparently express goals of decision making. The usage of the framework is illustrated by the
specification of a conceptual stochastic greenhouse gas emission problem. In a further exten-
sion of the basic theory, we show the correctness of the generic backward induction algorithm
implemented in the framework in a more general setting than commonly considered in control
theory.
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1 Introduction

We develop a domain-specific language (DSL) for the specification of decision problems in the con-
text of tipping point research based on earlier work on a computational theory of policy advice
proposed by Botta et al. in [BJI17a]. Our aim is to improve accountability in the context of climate
policy advice by narrowing the gap between mathematical problem specification and implementation
[BBCMM22b, BBCMM21, BBCMM22a] This is achieved by using a programming language based
on Dependent Type Theory, in which it is possible to express specification, implementation and
proof that the implementation fulfils certain properties within the same language.

As basis for the further work presented in this report, we define a lightweight version of the
[BJI17a] theory that is easier to use in practice and yet sufficiently expressive. We extend the Botta
et al. theory with generic measures of responsibility and a syntax to transparently express goals
of decision making. The usage of the framework is illustrated by the specification of a conceptual
stochastic climate policy problem. In the example we also discuss how to make use of conditional
probabilities in the spirit of Bayesian belief networks to define transition function of stochastic
decision problems in a modular way.

In a further extension of the basic theory, we discuss what correctness means for the generic
backward induction algorithm of the theory and show under which conditions it computes provably
optimal policy sequences. This allows to use this algorithm in a more general setting than commonly
considered in control theory. This is crucial if non-standard combinations of measures and non-
determinism, beyond the expected value measure and ordinary stochastic problems are considered.

In this report we primarily summarise our work presented in [BB21, BBC+21] including some
small extensions, and give pointers to possible future work. Together with [BBCMM22c] it forms
Deliverable 6.2 of the EU Horizon 2020 Project TiPES [TiP23]. As a supplement, the slides of
several introductory talks on the material covered in this report and the underlying paradigm are
available online [Bot20a, Bot20b, Bot20c, Bre20, MMB20, Bot21, Bre21, Bot22, Bre22].

Technical remarks. The theory used in the report is heavily based on dependent types and is
formulated in the programming language Idris [Bra17, The10]. Public versions in Idris are available
in [B+21] and [B+22]. For introductions to functional programming and dependent types, see
[Bir14, Bra17]. An introductory course on formal specification, monadic dynamical systems and the
IdrisLibs framework of [BJI17a] is available as TiPES deliverable D6.1 [BBCMM20]. The report
itself has been generated via lhs2TEX[HL15] from literate Idris files. These are publicly available at
https://doi.org/10.5281/zenodo.6826927 and can be type-checked for correctness.

2 Framework

In this section, we give a summary of the theory for the specifying and solving of finite hori-
zon sequential decision problems (SDPs) which is used in [BB21] and [BBC+21]. This theory is a
lightweight version of the framework of Botta, Jansson and Ionescu presented in [BJI17a] which has
been developed in TiPES, trading to a certain degree expressivity against ease of use. Here we recap
the lightweight theory and briefly discuss the differences between the two theories in Subsection 2.2.
Longer introductions to monadic sequential decision problems and the respective versions of the
framework can be found in [BJI17a, BB21, BBC+21].
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2.1 Problem specification and solution

In a nutshell, the theory consists of two sets of components: one for the specification of sequential
decision problems (SDPs) and one for their solution with verified backward induction. For informal
introductions to SDPs, see [BJI17a]. Reference mathematical introductions to SDP are given in
sections 1.2 and 2.1 of [Ber95] and [Put14], respectively.

Specification components. The specification of an SDP comprises three parts. The first part
consists of four components that specify the sequential decision process that underlies a decision
problem:

• A monad M , accounting for the uncertainties that affect the decision process:1.

M :Type → Type

• A type family X

X : (t :N)→ Type

where X t is the type of states at decision step t

• A type family Y

Y : (t :N)→ X t → Type

where Y t x is the type of controls available at decision step t and state x

• A transition function

next : (t :N)→ (x :X t)→ Y t x → M (X (S t))

such that next t x y is an M -structure of the states that can be reached by selecting control y in
state x at decision step t .

The uncertainty monad, the states, the controls and the next function completely specify a
decision process: if we were given a rule for selecting controls for a given decision process (that
is, a function that gives us a control for every possible state) and an initial state (or a probability
distribution of initial states) we could, in principle, compute all possible trajectories compatible with
that initial state (or with that probability distribution) together with their probabilities.

Indeed, a sequential decision problem for n steps consists of finding a sequence of n policies (in
control theory, functions that map states to controls or, in other words, decision rules, are called
policies) that, for a given decision process, maximises the value of taking n decision steps according
to those policies, one after the other.

In turn, the value of taking n decision steps according to a sequence of n policies is defined
through a measure (in stochastic problems often the expected-value measure) of a sum of rewards
obtained along the trajectories.

It follows that, in order to fully specify a decision problem, one has to define the rewards obtained
at each decision step, the sum that the decision maker seeks to maximise and the measure function.
This is done in terms of six problem specification components that form the second part of the
specification.

• A type of values

Val :Type

1Discussing the notion of monad here would go beyond the scope of this report, but see [Wad92] for an introduction
to monads in computer science, and our papers [BBJR21] and [BB21, Appendix 1.2] for their application in the context
of the Botta et al. framework.

B-3



step 0 step 1 step 2 . . .

state00

state10

•
•
•

state1n

state20

...

state2i

•
•
•

state2m

• • •

•
•
•

• • •

control00

control10

control1n

control20

control2i

control2m

reward
(state00, control00, state10)

reward
(state00, control00, state1n)

reward
(state10, control10, state20)

reward
(state10, control10, state2i)

reward
(state1n, control1n, state2m)

measured
reward

measured
reward

measured
reward

P(
sta

te1
0
| st

at
e00

, c
on
tro

l00
)

P(state
1n | state

00 , control0 )

P(state20
| state10, c

ontrol10
)

P(state2i | state10 , control10)

P(state2m | state1n, control1n)

Figure 1: Schematic illustration of a stochastic SDP.

• A reward function

reward : (t :N)→ (x :X t)→ Y t x → X (S t)→ Val

reward t x y x ′ is the reward obtained by selecting control y in state x when the next state is x ′

• A binary operation

(⊕) :Val → Val → Val

for aggregating rewards

• a reference value

zero :Val

determining an initial reward (or cost) before taking any decision2

• A measure

meas :M Val → Val

• A total preorder

(⊑ ) :Val → Val → Type

that allows to compare values.

A few remarks are at place here.

1. In many applications, Val is a numerical type and controls represent amounts of used resources
like fuel, water, etc. In these cases, the reward function encodes the value (cost) of these
resources (and perhaps also the benefits achieved by using them) over a decision step. Often,
the latter also depend both on the ”current” state x and on the next state x ′.

2The name might suggest that zero is supposed to be a neutral element relative to ⊕. However, this is not required
by the framework.
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2. When Val is a numerical type, ⊕ is often the canonical addition associated with that type.
However, in many applications more flexibility is needed, e.g., to model that decision makers
value later rewards less than earlier ones. Again, formulating the theory in terms of a generic
addition rule nicely covers all these applications.

3. Mapping reward t x y onto next t x y (remember that M is a monad and thus a functor)
yields a value of type M Val . These are the possible rewards obtained by selecting control y
in state x at decision step t .

4. In mathematical theories of optimal control, Val often is R, M is a probability monad and the
probability distributions on real numbers are compared based on the expected value measure.
See Figure 1 for a schematic illustration of a stochastic SDP.

5. In many applications, most prominently in climate policy, measuring uncertainty of rewards in
terms of expected value measures is inadequate. This is why the theory provides the possibility
to use other measures (and monads) as well. However, combinations of measure, monad and
⊕ need to fulfil certain compatibility conditions which will be discussed in Section 4.

The third part of a specification concerns the axioms that the data components have to fulfil.
These parts are needed for the verification of the monadic backward induction algorithm which will
be discussed in Section 4.

• Monad structure of M

monadM :Monad M

• The relation ⊑ is a total preorder

lteTP :TotalPreorder (⊑ )

• Monotonicity axioms for ⊕ and meas

plusMon : {v1 , v2 , v3 , v4 :Val } →
v1 ⊑ v2 → v3 ⊑ v4 → (v1 ⊕ v3 ) ⊑ (v2 ⊕ v4 )

measMon :Functor M ⇒ {A :Type } →
(f , g :A→ Val)→ ((a :A)→ f a ⊑ g a)→
(ma :M A)→ meas (map f ma) ⊑ meas (map g ma)

• Compatibility conditions for M , meas and ⊕:

– The measure needs to be left-inverse to pure: 3

measPureSpec :Monad M ⇒ meas ◦ pure .
= id

– Applying the measure after join needs to be extensionally equal to applying it aftermap meas:

measJoinSpec :Monad M ⇒ meas ◦ join .
= meas ◦map meas

– For arbitrary v :Val and non-empty mv :M Val applying the measure after mapping (v⊕)
onto mv needs to be equal to applying (v⊕) after the measure:

measPlusSpec :Monad M ⇒ (v :Val)→ (mv :M Val)→ (NonEmpty mv)→
(meas ◦map (v⊕)) mv = ((v⊕) ◦meas) mv

3The symbol
.
= denotes extensional equality, see [BBJR21] and [BB21, Appendix 1.3].
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For convenience, we may package up the above in records or type classes (called interfaces in
Idris), so that we can work with more than one SDP instance at a time.

interface Monad M ⇒ MSDProcess (M :Type → Type)
(X : (t :N)→ Type) (Y : (t :N)→ X t → Type) where
next : (t :N)→ (x :X t)→ Y t x → M (X (S t))

The definition of a monadic SDP requires the value type Val to carry some algebraic structure
captured by more general interfaces

interface Pointed (T :Type) where
point :T

interface Preorder (T :Type) where
(⩽) :T → T → Type

interface Monad M ⇒ MAlgebra (M :Type → Type) (T :Type) where
alg :M T → T

The Idris standard library already has an interface for semigroups amounting to

interface Semigroup (T :Type) where
(⊕) :T → T → T

Now we can define an interface for monadic SDPs:

interface (MSDProcess M X Y ,
Pointed Val ,Preorder Val ,Semigroup Val ,MAlgebra M Val)⇒
MSDProblem (M :Type → Type)
(X : (t :N)→ Type) (Y : (t :N)→ X t → Type)
(Val :Type) where
reward : (t :N)→ (x :X t)→ Y t x → X (S t)→ Val

These interfaces only encapsulate the data part of the definitions. For verification purposes
we could moreover define interfaces for the axioms that have to be fulfilled. E.g. for functors
(prerequisite for monads):

interface Functor F ⇒ VeriFunctor (F :Type → Type) where

mapPresId :{A :Type } → ExtEq {A = F A} (map id) id

mapPresComp :{A,B ,C :Type } → (f :A→ B)→ (g :B → C )→
ExtEq {A = F A} (map (g ◦ f )) (map g ◦map f )

mapPresEE :{A,B :Type } → (f , g :A→ B)→
ExtEq f g → ExtEq {A = F A} (map f ) (map g)

For the case of functors and monads we have discussed design choices that go into the definition of
such verification interfaces in [BBJR21], but in this report we will not go further into this issue.

Solution components. The second set of components of the theory is a generic formalisation
of classical optimal control theory for sequential decision problems. Here, we recall the central
elements. Motivation for the formalisation can be found in [BJI+17b], [BJI17a] and [BJI18]. For an
introduction to the mathematical theory of optimal control, we recommend [Put14] and [Ber95].

The basic notion of control theory is that of a policy – a decision rule. Policies are functions from
states to controls:

Policy :(t :N)→ Type
Policy t = (x :X t)→ Y t x

Policy sequences of length n :N then are essentially just vectors of policies.4

4Note that in Idris, S and Z are the constructors of the data type of natural numbers N. Arguments in curly
brackets like {t :N} in the definition of Nil and (::) are implicit parameters. If they can be inferred from the context,
they don’t have to be given as arguments later on. For (::) this allow to write policy sequences composed of a policy
p and as policy sequence ps simply as p :: ps.
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data PolicySeq :(t :N)→ (n :N)→ Type where
Nil : {t :N} → PolicySeq t Z
(::) : {t ,n :N} → Policy t → PolicySeq (S t) n → PolicySeq t (S n)

Perhaps, the most important notion in the mathematical theory of optimal control is that of value
function. The value function takes two arguments: a policy sequence ps for making n decision steps
starting from decision step t and an initial state in x :X t . It computes the value of taking n decision
steps according to the policies ps when starting in x :

val :Functor M ⇒ {t ,n :N} → PolicySeq t n → X t → Val
val {t } Nil x = zero
val {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in
meas (map (reward t x y

⊕
val ps) mx ′)

where

(
⊕

) : {A :Type } → (f , g :A→ Val)→ A→ Val
f
⊕

g = λa ⇒ f a ⊕ g a

is a lifted version of ⊕. Notice that, independently of the initial state x , the value of the empty
policy sequence is zero, the problem-specific reference value that has to be provided as part of a
problem specification.

The value of a policy sequence consisting of a first policy p and of a tail policy sequence ps is
defined inductively as the measure of a M -structure of Val values. These values are obtained by first
computing the control y dictated by p in x , the M -structure of possible next states mx ′ dictated
by next and finally by adding reward t x y x ′ and val ps x ′ for all x ′ in mx ′. The result of this
functorial mapping is then measured with the problem-specific measure meas to obtain a result of
type Val .

As shown in [BB21], val ps x does compute the meas-measure of the ⊕-sum of the reward -
rewards along the possible trajectories starting at x under ps for sound choices of meas. We will
come back to this in Section 4.

The above definition of val can be exploited to compute policy sequences that are provably
optimal. This observation was originally made by Bellman [Bel57] for deterministic and stochastic
SDPs. Provided that we can compute optimal extensions of arbitrary policy sequences

bestExt :Functor M ⇒ {t ,n :N} → PolicySeq (S t) n → Policy t

it is easy to derive a generic implementation of backward induction:5

bi :Functor M ⇒ (t :N)→ (n :N)→ PolicySeq t n
bi t Z = Nil
bi t (S n) = let ps = bi (S t) n in bestExt ps :: ps

This implementation of backward induction can be proven to compute optimal policy sequences if
bestExt computes optimal extensions of policy sequences:

BestExt :Functor M ⇒ {t ,n :N} → PolicySeq (S t) n → Policy t → Type
BestExt {t } ps p = (p′ :Policy t)→ (x :X t)→ val (p′ :: ps) x ⊑ val (p :: ps) x

bestExtSpec :Functor M ⇒ {t ,n :N} → (ps :PolicySeq (S t) n)→ BestExt ps (bestExt ps)

We come back to this in Section 4.

2.2 Lightweight vs. full theory

As noted in the beginning of this section, the theory proposed in [BJI17a] is slightly more general
than the one presented here.

5Note that in control theory backward induction is often referred to as the dynamic programming algorithm where
the term dynamic programming is used in the original sense of [Bel57].
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In particular, in the lightweight theory, policies are just functions from states to controls:

Policy : (t :N)→ Type
Policy t = (x :X t)→ Y t x

By contrast, in [BJI17a], policies are indexed over a number of decision steps n

Policy : (t ,n :N)→ Type
Policy t Z = Unit
Policy t (S m) = (x :X t)→ Reachable x → Viable (S m) x → GoodCtrl t x m

and their domain for n > 0 is restricted to states that are reachable and viable for n steps. This
allows to cope with states whose control set is empty and with transition functions that return
empty M -structures of next states. (For a discussion of reachability and viability see [BJI17a,
Sec. 3.7 and 3.8].)

This generality, however, comes at a cost: Compare e.g. the proof of Bellman’s principle in [BB21,
Appendix 5] with the corresponding proof in [BJI17a, Appendix B]. The impact of the reachability
and viability constraints on other parts of the theory is even more severe.

Here, we have decided to trade some generality for better readability and ease of use, opting for
a lightweight version of the original theory. Still, for the generic backward induction algorithm we
need to make sure that it is possible to define policy sequences of the length required for a specific
SDP. This can e.g. be done by postulating controls to be non-empty:

notEmptyY : (t :N)→ (x :X t)→ Y t x

We also impose a non-emptiness requirement on the transition function next that is relevant in the
context of the correctness result of [BB21] (see discussion in Section 7 of the paper).

nextNonEmpty : {t :N} → (x :X t)→ (y :Y t x )→ NonEmpty (next t x y)

Above we have not discussed under which conditions one can implement optimal extensions of ar-
bitrary policy sequences. This is an interesting topic but not central to the purpose of the current
report. For the same reason we have not addressed the question of how to make bi more efficient
by tabulation. We briefly discuss the specification and implementation of optimal extensions in the
framework in [BB21, Appendix 7]. We refer the reader interested in tabulation of bi to Sequen-
tialDecisionProblems.TabBackwardsInduction of [B+21].

3 Trajectories, flow and total rewards

In the previous section, we have seen the core components of the framework. In this section we
introduce some additional infrastructure for working with sequential decision processes and problems.

State trajectories. Given a policy sequence (optimal or not) and an initial state for an SDP, we
can compute the M -structure of possible trajectories starting at that state:

data StateSeq : (t ,n :N)→ Type where
Nil : {t :N} → StateSeq t Z
(#) : {t ,n :N} → X t → StateSeq (S t) n → StateSeq t (S n)

trjX :Monad M ⇒ {t ,n :N} → PolicySeq t n → X t → M (StateSeq t (S n))
trjX {t } Nil x = pure (x #Nil)
trjX {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in
map (x#) (mx ′ >>= trjX ps)

In order to extract specific information from a state trajectory, it is helpful to have a map-like
function
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mapX : {t ,n :N} → {O :Type } → ({t ′ :N} → X t ′ → O)
→ StateSeq t n → Vect n O

mapX obs Nil = [ ]
mapX obs (x # xs) = obs x ::mapX obs xs

Or if we explicitly need the value of t :

mapX ′ : {t ,n :N} → {O :Type } → ((t ′ :N)→ X t ′ → O)
→ StateSeq t n → Vect n O

mapX ′ obs Nil = [ ]
mapX ′ {t } obs (x # xs) = obs t x ::mapX ′ obs xs

Consider a type of policy functions

PolicyFunction : Type
PolicyFunction = (t :N)→ (x :X t)→ Y t x

that is, a policy function computes a control for any time step and state at that step. Then, omitting
policy sequences, we can compute trajectories by

trjX ′ :Monad M ⇒ {t :N} → PolicyFunction → (n :N)→ X t → M (StateSeq t (S n))
trjX ′ pol Z x = pure (x #Nil)
trjX ′ {t } pol (S n) x = let y = pol t x in

let mx ′ = next t x y in
map (x#) (mx ′ >>= trjX ′ pol n)

We could also consider any finite trajectories as initial segment of an infinite one. Consider for
this infinite sequences (streams) of states:

codata StateStream :(N→ Type) where
XCons :{t :N} → X t → StateStream (S t)→ StateStream t

Then we can compute infinite trajectories (in principle though not in practice) by

partial
trjX MStream :Monad M ⇒ PolicyFunction → (t :N)→ X t → M (Inf (StateStream t))
trjX MStream pol t x = let y = pol t x in

let mx ′ = next t x y in
let mtrj = trjX MStream pol (S t) in
let mapCons = map {f = M } (Delay ◦XCons {t } x ) in

mx ′ >>= (mapCons ◦mtrj )

However, Idris will not certify that this function is total as the definition of trjX MStream does not
meet the totality checker’s syntactic guard condition for the recursive call.

For a deterministic transition function

step :(t :N)→ (x :X t)→ Y t x → X (S t)

there is no such problem:

trjX Stream :PolicyFunction → (t :N)→ X t → StateStream t
trjX Stream pol t x = let y = pol t x in

let x ′ = step t x y in
x ‘XCons‘ trjX Stream pol (S t) x ′

To recover finite finite trajectories, we can use a helper function

take : (t ,n :N)→ Inf (StateStream t)→ StateSeq t n
take t Z xs = Nil
take t (S n) (XCons x xs) = x # (take (S t) n xs)

such that

trjXLemma :Monad M ⇒ (t ,n :N)→ (pol :PolicyFunction)→ (x :X t)→
map (take t (S n)) (trjX MStream pol t x ) = trjX ′ pol n x
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Flow. If we are not interested in the whole trajectory, but only in the final state, we can define a
multi-step flow function from the single-step transition function next :

flow :Monad M ⇒ {t ,n :N} → PolicySeq t n → X t → M (X (n + t))
flow Nil x = pure x
flow {t } {n = S n } (p :: ps) x = rewrite plusSuccRightSucc n t in

next t x (p x )>>= flow ps

where the plusSuccRight n t is the lemma S (n + t) = n + S t which is required to change
make the outcome type correct: The rewrite mechanism changes the type M (X (S (n + t))) of
next t x (p x ) >>= flow ps (which is inferred by the Idris type checker) to the expected result type
M (X S (n + t)) (which is definitionally equal6 to M (X (S n + t))).

More informative trajectories. Computing a “trajectory of rewards” requires more information
than just a sequence of states, since rewards may depend not only on one state but also on its
successor state and the control used. We therefore define more expressive trajectories

data StateCtrlSeq : (t ,n :N)→ Type where
Last : {t :N} → X t → StateCtrlSeq t (S Z )
(##) : {t ,n :N} → (x :X t ∗∗Y t x )→ StateCtrlSeq (S t) (S n)→ StateCtrlSeq t (S (S n))

trj :Monad M ⇒ {t ,n :N} → PolicySeq t n → X t → M (StateCtrlSeq t (S n))
trj {t } Nil x = pure (Last x )
trj {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in
map ((x ∗∗ y)##) (mx ′ >>= trj ps)

where we use StateCtrlSeq as type of trajectories. Essentially it is a non-empty list of (dependent)
state/control pairs, with the exception of the base case which is a singleton just containing the last
state reached. Now we can now compute lists of rewards

trjR : {t ,n :N} → StateCtrlSeq t n → List Val
trjR {t } (Last x ) = [zero ]
trjR {t } ((x ∗∗ y) ## xys) = reward t x y (head xys) :: trjR xys

where head is a helper function that extracts the head of a state-control sequence

head : {t ,n :N} → StateCtrlSeq t (S n)→ X t
head (Last x ) = x
head ((x ∗∗ y) ## xys) = x

Furthermore, we can compute the total reward for a single trajectory, i.e. its sum of rewards:7

sumR : {t ,n :N} → StateCtrlSeq t n → Val
sumR {t } (Last x ) = zero
sumR {t } ((x ∗∗ y) ## xys) = reward t x y (head xys)⊕ sumR xys

By mapping sumR onto an M -structure of trajectories, we obtain an M -structure containing the
individual sums of rewards of the trajectories. Now, using the measure function, we can compute
the measured total reward for a policy sequence ps and an initial state x :

val ′ : Monad M ⇒ {t ,n :N} → (ps :PolicySeq t n)→ (x :X t)→ Val
val ′ ps = meas ◦map sumR ◦ trj ps

The measured total reward is the generic analogue of what is called the expected total reward in the
standard case of stochastic SDPs using the expected value measure (see [Put14, ch. 4.1.2]). This
function plays a crucial role in the semantic verification of the framework that has been presented
in [BB21] and will be discussed in the next section.

6If two expressions are definitionally equal, the type checker can automatically transform them into the same term
and thus automatically infer that they are equal, without requiring an additional equality proof like the plusSuccRight
lemma.

7More concisely sumR may be expressed using the foldr operator: sumR = foldr (⊕) zero ◦ trR.
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Comparison experiments. Based on the above functions for calculating trajectories and values,
further infrastructure for different kinds of comparison experiments can be defined in a straightfor-
ward manner. We give here some examples.

Given a vector of policy sequences, we can compute the vector of corresponding monadic struc-
tures of trajectories:

trjPar :Monad M ⇒ {n,m, t :N} → Vect m (PolicySeq t n)→ X t →
Vect m (M (StateSeq t (S n)))

trjPar pss x0 = map (flip trjX x0) pss

or for a sequence of states (i.e. starting at increasing time steps) and a policy sequence:

trjSeq :Monad M ⇒ {t ,n,m :N} → ({t ′ :N} → PolicySeq t ′ n)→
StateSeq t m → Vect m (t ′′ :N ∗∗M (StateSeq t ′′ (S n)))

trjSeq {t } ps Nil = [ ]
trjSeq {t } ps (x # xs) = (t ∗∗ trjX ps x ) :: trjSeq ps xs

A version of trjPar adding information about the initial time step to the output:

trjPar ′ :Monad M ⇒ {t ,n,m :N} → Vect m ((t ′ :N)→ PolicySeq t ′ n)→
X t → Vect m (t :N ∗∗M (StateSeq t (S n)))

trjPar ′ {t } {n } [ ] x = [ ]
trjPar ′ {t } {n } (ps :: pss) x = (t ∗∗ trjX (ps t) x ) :: trjPar ′ pss x

Compute the trajectories for a vector of policy sequences and a state sequence of initial states:

trjParSeq :Monad M ⇒ {t ,n,m, s :N} → Vect s ((t ′ :N)→ PolicySeq t ′ n)→
StateSeq t m → Vect m (Vect s (t :N ∗∗M (StateSeq t (S n))))

trjParSeq pss xs = mapX (trjPar ′ pss) xs

And the same for multiple state sequences of initial states:

trjParVSeq :Monad M ⇒ {t ,n,m, s, u :N} →
Vect s ((t ′ :N)→ PolicySeq t ′ n)→
Vect u (M (StateSeq t m))→
Vect u (M (Vect m (Vect s (t :N ∗∗M (StateSeq t (S n))))))

trjParVSeq {n } pss mxss = map (map (trjParSeq {n } pss)) mxss

This function may be used for a two-stage computation as indicated in Figure 2

twoStageAssessment :Monad M ⇒ {t ,n,m, u, v :N} →
(pss :Vect u (PolicySeq t n))→
(pss ′ :Vect v ((t ′ :N)→ PolicySeq t ′ m))→ X t
→ Vect u (M (Vect (S n) (Vect v (t :N ∗∗M (StateSeq t (S m))))))

twoStageAssessment {t } pss pss ′ =
let stage1 = trjPar pss in
let stage2 = trjParVSeq pss ′ in

stage2 ◦ stage1

This kind of assessment will be relevant for the notion of lost option commitment explored in
the context of TiPES Deliverable D6.3 [MMCBB22a, MMCBB22b]. If we are not interested in full
(monadic) trajectories but only in the final states or the aggregated values resulting from different
policy sequences, we can use the following functions:

flowPar :Monad M ⇒ {t ,n,m :N} → Vect m ((t ′ :N)→ PolicySeq t ′ n)→
X t → Vect m (M (X (n + t)))

flowPar {t } {n } [ ] x = [ ]
flowPar {t } {n } (ps :: pss) x = flow (ps t) x :: flowPar pss x

flowParSeq :Monad M ⇒ {t ,n,m, s :N} → StateSeq t n →
Vect s ((t ′ :N)→ PolicySeq t ′ m)→

B-11



Figure 2: Two-stage parallel computation along multiple policy sequences illustrating the compu-
tation of lost option commitment explored in the context of TiPES Deliverable D6.3 [MMCBB22a,
MMCBB22b].

Vect n (t ′′ ∗∗Vect s (M (X (m + t ′′))))
flowParSeq xs pss = mapX ′ (λt , x ⇒ (t ∗∗ (flowPar pss x ))) xs

and

valPar :Monad M ⇒ {t ,n,m :N} → Vect m ((t ′ :N)→ PolicySeq t ′ n)→
X t → Vect m Val

valPar {t } {n } [ ] x = [ ]
valPar {t } {n } (ps :: pss) x = val (ps t) x :: valPar pss x

valParSeq :Monad M ⇒ {t ,n,m, s :N} →
Vect s ((t ′ :N)→ PolicySeq t ′ m)→
StateSeq t n → Vect n (Vect s Val)

valParSeq pss xs = mapX (λx ⇒ valPar pss x ) xs

twoStageValuation :Monad M ⇒ {t ,n,m, u, v :N} →
(pss :Vect u (PolicySeq t n))→
(pss ′ :Vect v ((t ′ :N)→ PolicySeq t ′ m))→
X t → Vect u (M (Vect (S n) (Vect v Val)))

twoStageValuation {u } pss pss ′ =
let stage1 = trjPar pss in
let stage2 = map (map (valParSeq pss ′)) in

stage2 ◦ stage1

Based on the function introduced in this section we can describe typical experiments like sensitivity
or commitment computations [BBCMM22c, Section 3+4].

Numerical simulation. As can be seen from the type of the next function, the basic formalism
does assume that a time-discrete one step transition function is given. Although numerical simulation
is not the main objective of the framework, we sketch how to arrive at a sequential decision process
when starting from a ordinary differential equation (ODE) description of a parameterised and forced
dynamical system.

Consider an ODE

dx

dt
(t) = f(p, t, x(t))

B-12



where t : T , x : T → Rn for some n :N, and p :P where P is a type of parameters. The function
f defining the right-hand side of the ODE has the type P ×T ×Rn → Rn. Typically one has on the
one hand constant parameters, on the other hand time-dependent forcings. In implementations, R
is typically represented by floating point numbers. He we follow this common approach and do not
go into formalisation of real number arithmetic.

Using slightly more general types than above, let f be encoded as a function of type

Time : Type
Time = Double

Rn :Type
P :Type

f : P → Time → Rn → Rn

Given this representation of the RHS of the ODE, the simplest way to obtain a one step function is
the forward Euler method using a uniform time step delta t :TimeDiff

TimeDiff : Type
TimeDiff = Double

delta t :TimeDiff

an addition

add :Rn → Rn → Rn

and a scalar multiplication

smult :TimeDiff → Rn → Rn

eulerForward : {X ,X ′,Param :Type } →
(add :X → X ′ → X )→ (smult :TimeDiff → X ′ → X ′)→
(rhs :Param → Time → X → X ′)→ TimeDiff → Param → Time → X → X

eulerForward add smult rhs dt p t x = x ‘add ‘ (dt ‘smult ‘ (rhs p t x ))

Given a function natToTime that associates decision steps with points in time

natToTime :N→ Time

one might thus define a deterministic sequential decision process with

Framework .M T = T
X = Rn
Y = P

next t x y = eulerForward add smult f delta t y (natToTime t) x

Now, for a real application, one would of course want to do a number of improvements of the basic
idea described above. Though not in the scope of the current report, especially more accurate
integration methods would be important, and could be supported by a convenient DSL to derive
decision processes from ODEs.

However, a shortcoming of the above that is easy to fix is the following: For a decision problem
on top of such a process, one would very likely not want to associate one decision step with one
integration step.

This can be easily solved by using a generic iteration function similar to the flow function defined
above:

iter : {A :Type } → (Time → A→ A)→ TimeDiff → N→ Time → A→ A
iter f dt Z t a = a
iter f dt (S n) t a = iter f dt n (t + dt) (f t a)

Now, if one step of next should amount to e.g. 1000 integration steps, one can define next by
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next t x y = let aux = eulerForward add smult f delta t y in
iter aux delta t 1000 (natToTime t) x

Note that the value of the parameter is kept constant during the intermediate iterations. This is
coherent with the idea of a control parameter that can only be influenced at the decision steps.
However, if the control parameters are meant to represent a continuous function, this might not be
the intended behaviour. In this case it seems reasonable to use some form of interpolation to recover
intermediate values and make the resulting function part of the parameters of the system.

4 Correctness of the framework

An important aspect of using a dependently typed programming language is that it allows to specify
and implement programs and prove their correctness with respect to the specification all in the same
language.

In [BJI17a], it was formally proved that the backward induction of the full theory computes
policy sequences that are optimal with respect to the value function val of section 2.1 which is a
monadic generalisation of the Bellman equation [Bel57]. However, in the literature on stochastic
SDPs this formulation of the value function is itself part of the backward induction algorithm and
needs to be verified against an objective function or optimisation criterion, called the expected total
reward in [Put14, Ch. 4.2]. For stochastic SDPs semi-formal proofs can be found in textbooks – but
monadic SDPs are substantially more general than the stochastic SDPs for which these results are
established. This observation raises a number of questions:

• What exactly should “correctness” mean for a solution of monadic SDPs?

• Does monadic backward induction provide correct solutions in this sense for monadic SDPs in
their full generality?

• And if not, is there a class of monadic SDPs for which monadic backward induction does provide
provably correct solutions?

We have addressed these questions in [BB21] and made the following contributions to answering
them:

• We put forward a formal specification that monadic backward induction should meet in order
to be considered “correct” as solution method for monadic SDPs. This specification uses an
optimisation criterion that is a generic version of the expected total reward of standard control
theory textbooks. In analogy, we call this criterion measured total reward (computed by the
function val ′ defined in Section 3).

• We consider the value function underlying monadic backward induction as “correct” if it computes
the measured total reward.

• If the value function val is correct in this sense, then monadic backward induction can be proven
to be correct by extending the result of [BJI17a]. However, we showed in [BB21] that val does
not compute the measured total reward for arbitrary monadic SDPs that only fulfil the axioms of
the [BJI17a] theory.

• We therefore formulated compatibility conditions that identify a class of monadic SDPs for
which val and thus monadic backward induction can be shown to be correct. The conditions
(measPureSpec,measJoinSpec andmeasPlusSpec of Sectionsubsection:framework:specsol) are fairly
simple and allow for a neat description in category-theoretical terms using the notion of Eilenberg-
Moore-algebra.

• We gave a formalised proof that monadic backward induction fulfils the correctness criterion if
the conditions hold. This correctness result can be seen as a generic version of correctness results
for standard backward induction like [Ber95, Prop. 1.3.1] and [Put14, Th. 4.5.1.c].
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Below we will outline the two parts of the correctness proof for the lightweight theory of Sec-
tion 2.1. The full proofs, discussion of the compatibility conditions and reasons why they are required
can be found in [BB21]. It is worth stressing that our conditions can be useful for anyone interested
in applying monadic backward induction in non-standard situations – completely independent of the
BJI-framework.

4.1 Specifying correctness

By analogy to the case of stochastic SDPs treated in textbooks like [Put14], we define backward
induction for monadic SDPs to be correct if it computes a policy sequence that results in the optimal
measured total reward for any initial state. This is expressed by the following specification:

biOptMeasTotalReward :Monad M ⇒ (t ,n :N)→ OptimalPolicySeq val ′ (bi t n)

where OptimalPolicySeq is an generic optimality predicate that takes as parameters an objective
function and a policy sequence. The predicate holds if the policy sequence is optimal with respect
to the objective function. Above, the objective function is the measured total reward val ′.

OptimalPolicySeq : {t ,n :N} → (PolicySeq t n → X t → Val)→ PolicySeq t n → Type

OptimalPolicySeq {t } {n } f ps = (ps ′ :PolicySeq t n)→ (x :X t)→ f ps ′ x ⊑ f ps x

In [BJI17a], Botta et al. have shown (for the full theory) that if M is a monad, ⊑ a total preorder
and ⊕ and meas fulfil the two monotonicity conditions measMon and plusMon, then bi t n yields
an optimal policy sequence with respect to the value function val in the sense that val ps ′ x ⊑
val (bi t n) x for any policy sequence ps ′ and initial state x , for any t ,n :N. Or, expressed using
the generic optimality predicate, that the type

OptimalPolicySeq {t } {n } val (bi t n)

is inhabited. As seen in Sec. 2.1, the function val measures and adds rewards incrementally. But
does it always compute the measured total reward like val ′? Modulo differences in the presentation
[Put14, Theorem 4.2.1] suggests that for standard stochastic SDPs, val and val ′ are extensionally
equal, which in turn allows the use of backward induction for solving these SDPs. Generalising, we
therefore consider val as correct if it fulfils the specification

valMeasTotalReward : {t ,n :N} → (ps :PolicySeq t n)→ (x :X t)→ val ps x = val ′ ps x

If this equality holds for the general monadic SDPs of the framework, we can prove the correctness
of bi as immediate corollary of valMeasTotalReward . We therefore proceed as follows:

(1.) Prove OptimalPolicySeq val (bi t n): bi computes optimal policy sequences wrt val

(2.) Prove valMeasTotalReward : val is extensionally equal to val ′

(3.) Deduce biOptMeasTotalReward : bi computes optimal policy sequences wrt val ′

4.2 Optimality with respect to val

The generic implementation of backward induction of the [BJI17a] theory uses a generalisation of
Bellman’s principle of optimality. In control theory textbooks, this principle is often referred to as
Bellman’s equation. It can be suitably formulated in terms of the notion of optimal extension. Recall
from Section 2.1 that we say that a policy p :Policy t is an optimal extension of a policy sequence
ps :Policy (S t) n if it is the case that the value of p :: ps is at least as good as the value of p′ :: ps
for any policy p′ and for any state x :X t :

BestExt :Functor M ⇒ {t ,n :N} → PolicySeq (S t) n → Policy t → Type
BestExt {t } ps p = (p′ :Policy t)→ (x :X t)→ val (p′ :: ps) x ⊑ val (p :: ps) x

With the notion of optimal extension in place, Bellman’s principle can then be formulated as
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Bellman :Functor M ⇒ {t ,n :N} →
(ps :PolicySeq (S t) n)→ OptimalPolicySeq val ps →
(p :Policy t)→ BestExt ps p →
OptimalPolicySeq val (p :: ps)

In words: extending an optimal policy sequence with an optimal extension (of that policy sequence)
yields an optimal policy sequence. Another way of expressing the same principle is to say that
prefixing with optimal extensions preserves optimality.

Proving Bellman’s optimality principle is almost straightforward and crucially relies on ⊑ being
reflexive and transitive (remember that ⊑ is a total preorder). The proof obligation is to show that

val (p′ :: ps ′) x ⊑ val (p :: ps) x

for arbitrary p′, ps ′ and x of suitable types. This is achieved by transitivity of ⊑ on two sub proofs:

val (p′ :: ps ′) x ⊑ val (p′ :: ps) x

and

val (p′ :: ps) x ⊑ val (p :: ps) x

The first inequality follows from the optimality of ps (the second argument of Bellman), reflexivity
of ⊑ and from the two monotonicity properties plusMon and measMon from Section 2.1:

plusMon : {v1 , v2 , v3 , v4 :Val } →
v1 ⊑ v2 → v3 ⊑ v4 → (v1 ⊕ v3 ) ⊑ (v2 ⊕ v4 )

measMon :Functor M ⇒ {A :Type } →
(f , g :A→ Val)→ ((a :A)→ f a ⊑ g a)→
(ma :M A)→ meas (map f ma) ⊑ meas (map g ma)

The condition measMon is a special case of the measure monotonicity requirement originally formu-
lated by C. Ionescu in [Ion09] in the framework of a theory of vulnerability and monadic dynamical
systems. It is a natural property that, among others, the expected value measure and the worst
(best) case measure do fulfil.

The second inequality directly follows from the last argument of Bellman, a proof that BestExt ps p.
We provide a proof of Bellman in [BB21, Appendix 5]. As one would expect, the proof crucially
depends on the recursive definition of val discussed above. With Bellman in place, we can straight-
forwardly prove that the generic monadic implementation of backward induction bi computes policy
sequences that are optimal with respect to val . The proof is by induction on the length of the policy
sequence.

For the base case, note that the empty policy sequence is optimal because any empty policy
sequence will result in value zero and ⩾ is reflexive:

biLemmaBase :Functor M ⇒ OptimalPolicySeq val Nil
biLemmaBase Nil x = reflexive lteTP zero

In the step case, we apply Bellman’s principle. We thus get the following proof of optimality with
respect to val :

biLemma :Functor M ⇒ (t :N)→ (n :N)→ OptimalPolicySeq val (bi t n)
biLemma t Z = biLemmaBase -- base case
biLemma t (S n) = -- step case

let ps = bi (S t) n in -- ps computed by backward induction
let ops = biLemma (S t) n in -- induction hypothesis
let p = bestExt ps in -- p computed by best extension function
let oep = bestExtSpec ps in -- specification of best extension

Bellman ps ops p oep -- application of Bellman’s principle

B-16



4.3 Extensional equality of val and val ′

Now we show that the monadic value function val based on Bellman’s equation computes the mea-
sured total reward by showing that the functions val and val ′ are extensionally equal

valMeasTotalReward : {t ,n :N} → (ps :PolicySeq t n)→ (x :X t)→ val ′ ps x = val ps x

The proof of valMeasTotalReward is slightly more involved than the proof of biLemma. Therefore
we will present the main part of the proof in semi-formal equational style here, while the full
implementation can be found in [BB21, Appendix 2].

Inspecting the definitions of val and val ′, we see that they exhibit different computational pat-
terns: While val ′ first computes all possible trajectories for the given policy sequence and initial
state, then computes their individual sum of rewards and finally applies the measure once, val com-
putes its final result by adding the current reward to an intermediate outcome and applying the
measure locally at each decision step. This suggests that a transformation from val ′ to val will
essentially have to push the application of the measure into the recursive computation of the sum
of rewards. The proof is carried out by induction on the structure of policy sequences. It hinges on
the three compatibility conditions between the monad M , the measure meas and the operation ⊕
stated in Section 2.1, measPure, measJoin and measPlus. These properties ensure that the objective
function val ′ can be transformed into the more efficient val without loss of information.8

Lemmas. Based on the general functor and monad properties of M and the compatibility condi-
tions, we can prove the following technical lemmas:

measAlgLemma : {A,B :Type } → (f :B → Val)→ (g :A→ M B)→
(meas ◦map (meas ◦map f ◦ g)) .

= (meas ◦map f ◦ join ◦map g)

headTrjLemma : {t ,n :N} → (ps :PolicySeq t n)→ (r :X t → Val)→
(s :StateCtrlSeq t (S n)→ Val)→ (x :X t)→
(map (r ◦ head ⊕

s) ◦ trj ps) x =
(map (const (r x )

⊕
s) ◦ trj ps) x

measSumLemma : {t ,n :N} → (ps :PolicySeq t n)→
(r :X t → Val)→
(s :StateCtrlSeq t (S n)→ Val)→
(meas ◦map (r ◦ head ⊕

s) ◦ trj ps) .
=

(r
⊕

meas ◦map s ◦ trj ps)

The first lemma allows us to lift and eliminate an application of the monad’s join operation.
9 The second lemma says that mapping the function head onto an M -structure of trajectories
computed with trj results in an M -structure filled with the initial states of these trajectories. The
third lemma allows us to both commute the measure into the right summand of an

⊕
-sum and to

perform the head/trajectory simplification. It lies at the core of the relationship between val and val ′.

Main proof. With these lemmas in place, we can prove that val is extensionally equal to val ′.

Let t ,n :N, ps :PolicySeq t n. We prove valMeasTotalReward by induction on ps.

Base case. We need to show that for all x :X t , val ′ Nil x = val Nil x . The right hand side of
this equation reduces to zero by definition. The left hand side can be simplified to meas (pure zero)
since pure is a natural transformation. At this point, our first condition, measPureSpec, comes into
play: Using that meas is inverse to pure on the left, we can conclude that the equality holds.

In equational reasoning style: For all x :X t ,

8Essentially, the proof consists of an algorithm that performs this transformation.
9This lemma is generic in the sense that it holds for arbitrary Eilenberg-Moore algebras of a monad. Here we prove

it for the framework’s measure meas, but note that in [BB21, Appendix 4.1] we prove a generic version that is then
appropriately instantiated.
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valMeasTotalReward Nil x =

(val ′ Nil x ) ={ by definition of val ′ }=

(meas (map sumR (trj Nil x ))) ={ by definition of trj }=

(meas (map sumR (pure (Last x )))) ={ pure is a natural transformation }=

(meas (pure (sumR (Last x )))) ={ by definition of sumR }=

(meas (pure zero)) ={ by measPureSpec }=

(zero) ={ by definition of val }=

(val Nil x )

Step case. The induction hypothesis (IH ) is: for all x :X t , val ′ ps x = val ps x . We have to show
that IH implies that for all p :Policy t and x :X t , the equality val ′ (p :: ps) x = val (p :: ps) x
holds. For brevity (and to economise on brackets), let in the following y = p x , mx ′ = next t x y ,
r = reward t x y , trjps = trj ps, and consxy = ((x ∗∗ y)##).

As in the base case, all that has to be done on the val -side of the equation only depends on
definitional equality. However, it is more involved to bring the val ′-side into a form in which the
induction hypothesis can be applied. This is where we leverage on the lemmas proved above.

By definition and because map preserves composition, we know that val ′ (p :: ps) x is equal to
(meas ◦map ((r ◦ head)⊕ sumR)) (mx ′ >>= trjps). We use the relation between the monad’s bind
and join to eliminate the bind -operator from the term. Now we can apply the first lemma from
above, measAlgLemma, to lift and eliminate the join operation.

To commute the measure under the
⊕

and get rid of the application of head , we use our third
lemma, measSumLemma. At this point we can apply the induction hypothesis and the resulting
term is equal to val ps x by definition.

The more detailed equational reasoning proof:

valMeasTotalReward (p :: ps) x =

(val ′ (p :: ps) x ) ={ by definition of val ′ }=
(meas (map sumR (trj (p :: ps) x ))) ={ by definition of trj }=
(meas (map sumR (map consxy (mx ′ >>= trjps)))) ={ map preserves composition }=
(meas (map (sumR ◦ consxy) (mx ′ >>= trjps))) ={ by definition of sumR }=
(meas (map ((r ◦ head)⊕ sumR) (mx ′ >>= trjps))) ={ relation bind/join }=
(meas (map ((r ◦ head)⊕ sumR) (join (map trjps mx ′)))) ={ by measAlgLemma }=
(meas (map (meas ◦map (r ◦ head ⊕

sumR) ◦ trjps) mx ′)) ={ by measSumLemma }=
(meas (map (r

⊕
meas ◦map sumR ◦ trjps) mx ′)) ={ by definition of val ′ }=

(meas (map (r
⊕

val ′ ps) mx ′)) ={ by induction hypothesis }=
(meas (map (r

⊕
val ps) mx ′)) ={ by definition of val }=

(val (p :: ps) x )

□

Technical remarks. The above proof of valMeasTotalReward omits some technical details that
may be uninteresting for a pen and paper proof, but turn out to be crucial in the setting of an
intensional type theory – like Idris – where function extensionality does not hold in general. In
particular, we have to postulate that the functorial map preserves extensional equality (see [BB21,
Appendix 1.2] and [BBJR21] for details) for Idris to accept the proof. In fact, most of the reasoning
proceeds by replacing functions that are mapped onto monadic values by other functions that are
only extensionally equal. Using that map preserves extensional equality allows to carry out such
proofs generically without knowledge of the concrete structure of the functor.
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4.4 Concluding correctness

Using the results from above, we can now prove the correctness of monadic backward induction,
namely that the policy sequences computed by bi are optimal with respect to the measured total
reward computed by val ′:

biOptMeasTotalReward : (t ,n :N)→ OptimalPolicySeq val ′ (bi t n)

biOptMeasTotalReward t n ps ′ x =
let vvEqL = sym (valMeasTotalReward ps ′ x ) in
let vvEqR = sym (valMeasTotalReward (bi t n) x ) in
let biOpt = biOptVal t n ps ′ x in
replace vvEqR (replace vvEqL biOpt)

The statement biOptMeasTotalReward can be seen as a generic version of textbook correctness
statements for backward induction as solution method for stochastic SDPs like [Ber95, prop.1.3.1]
or [Put14, Theorem 4.5.1.c]. By proving valMeasTotalReward we have therefore extended the veri-
fication of [BJI17a] and obtained a stronger correctness result for monadic backward induction.

5 Example: A GHG emission SDP

In this section we revisit the stochastic decision process underlying the SDP discussed in [BBC+21].
We first describe the problem informally. Then we give a formal specification of the underlying
decision process and discuss how to derive a modular definition of the transition function guided
by a Bayesian network. We will come back to this example in Section 7 and extend it to a full
sequential decision problem.

5.1 Informal description of the problem

Consider a GHG emissions process in which now and for a few more decades, humanity (taken here
as a global decision maker) faces two options:

1. Start a “green” transition by reducing GHG emissions according to a “safe” corridor, for
example, the one depicted at page 15, Figure SPM.3a of the IPCC Summary for Policymakers
[Int18]

2. Delay such transition.

In other words, assume that, over the time period between two subsequent decisions (say, for con-
creteness, a decade), either a transition to a nearly carbonised global socio-economic system is
started or nothing happens. Further, assume that, once a transition has been started, it cannot be
halted or reversed by later decisions or events. We consider this oversimplified situation only for
the sake of clarity, although it might well be that green transitions are in fact fast and irreversible
[ODC+20].

Selecting to start a green transition in a specific physical, social and economic condition yields a
different “new” condition at the next decision step. Let’s call one such condition a micro-state.

The idea is that micro-states are detailed descriptions of physical, social and economic observ-
ables. For example, a micro-state could encode values of GHG concentrations in the atmosphere,
carbon mass in the ocean upper layer, global temperature deviations, frequency of extreme events,
values of economic growth indicators, measures of inequality, etc. Even if we knew the “current”
micro-state perfectly, the set of possible micro-states at the next decision step (say, one decade
later) would still be extremely large, reflecting both the epistemic uncertainties (imperfect knowl-
edge) about the (physical, social and economical) processes that unfold in the time between now
and the next decision step and the aleatoric uncertainty [She19] of those processes.

Descriptions of decision processes explicitly based on micro-states would be both computation-
ally intractable and, as discussed in detail in section 6, methodologically questionable. As in the
the car accident example quoted at the opening of this section, we avoid these shortcomings by
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considering only a small number of sets (clusters, partitions) of micro-states. These macro-states
(in the following, just states) consist of micro-states in which:

• A green transition has been started or delayed (S -states, D-states).

• The economic wealth is high or low (H -states, L-states).

• The world is committed or uncommitted to severe CC impacts (C -states, U -states).

In other words, we only distinguish between 8 possible states: DHU , DHC , DLU , DLC , SHU , SHC ,
SLU and SLC where DHU represent micro-states in which a green transition has been delayed,
economic wealth is high and the world is uncommitted to future severe CC impacts. Similarly for
DHC , DLU , etc.

Clearly, this is a very crude simplification. But it is useful to study the impact of uncertainty
on relevant climate decisions and sufficient to illustrate our approach towards measuring how much
decisions matter. Also, notice that binary partitioning of micro-states is at the core of the original
notion of planetary boundaries [RSN+09], of the topological classification proposed in [HKDM16a]
and of the social dilemmas discussed in [BDLK18].

The decision process starts in DHU . In this state, a decision to start a green transition can lead
to any of the DHU . . .SLC states, albeit with different probabilities: the idea is that the probability
of reaching states in which the green transition has been started (S -states) is higher than the
probability of reaching D-states, in which the green transition has been delayed. Symmetrically,
we assume that the decision to delay the start of a green transition in DHU is more likely to yield
D-states than S -states.

In other words, we assume our (global, idealised) decision maker to be effective, but only to a
certain degree. This accounts for the fact that, in practice, decisions are not always implemented,
be this because global coordination is necessarily imperfect, because global players tend to be in
competition and legislation tends to have large inertia or perhaps because some other global chal-
lenge (a pandemic or an economic downturn) has taken centre stage. As demonstrated in [BJI18],
limited effectiveness has a significant impact on optimal GHG emissions policies. Thus, it would be
inappropriate to assume that decisions are always implemented with certainty.

Another essential trait of our stylised process is that decisions to start a green transition, if
implemented, are more likely to yield states with a low level of economic wealth (L-states) than
states with high economic wealth. This assumption reflects the fact that starting a green transition
requires more investments and costs than just moving to states in which most of the work towards
a globally decarbonised society remains to be done.

Finally, we assume that the probability of entering states in which the world is committed to
severe CC impacts is higher in states in which a green transition has not already been started as
compared to states in which a green transition has been started. Also, as one would expect, delaying
transitions to decarbonised economies increases the likelihood of entering states in which the world
is committed to severe CC impacts.

Next, we give a complete formal specification of our stylised decision process.

5.2 Formal specification of the decision process

Monad. As a first step, we have to define the uncertainty monad M . As discussed in the intro-
duction, our stylised GHG emission process is a stochastic process and thus M represents stochastic
uncertainty:

Framework .M = SimpleProb

Here, SimpleProb is a finite probability monad: for an arbitrary type A, a value of type SimpleProb A
just consists of a list of elements of type (A, Double⩾0) together with a proof that the sum of the
seconds of such list is positive.
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States and controls. Second, we have to specify the states and the controls of the process. The
states informally introduced above consisted of three components: one to indicate whether a green
transition had been started or not (S or D), one to represent the economy (L or H) and one to
indicate whether the state is considered committed or not (U or C). Accordingly, we just define
types for each of these components:

data SD = S | D
data LH = L | H
data UC = U | C

Then each informal state can be represented as a triple, e.g. DHU as (D ,H ,U ). Thus, we define
the type of states as10

State : Type
State = (SD ,LH ,UC )

X t = State

Third, we have to specify the controls of the stylised GHG emission process. Above, we said that
in states in which a green transition has not already been started (that is, in D-states), the decision
maker has the option of either starting or further delaying a green transition.

data StartDelay = Start | Delay

Y t (D , x2 , x3 ) = StartDelay

However, if a a green transition has already been started, the decision maker has no alternatives.
We formalise this idea by defining the set of controls in S-states to be a singleton:

Y t (S , x2 , x3 ) = Unit

It will be useful to have two functions that test whether a state is committed to impacts from climate
change and whether the economic wealth has taken a downturn:

isCommitted : (t :N)→ X t → B
isCommitted t ( x1 , x2 ,U ) = False
isCommitted t ( x1 , x2 ,C ) = True

isDisrupted : (t :N)→ X t → B
isDisrupted t ( x1 ,H , x3 ) = False
isDisrupted t ( x1 ,L, x3 ) = True

That is, isCommitted (isDisrupted) returns True in C -states (L-states) and False in U -states (H -
states).

The next function. Finally, we have to specify the transition function of the sequential decision
process. As discussed in the introduction, this is defined in terms of transition probabilities (all
these probabilities are of type Double⩾0).

• The probabilities of starting a green transition:

Let’s first specify the probability that a green transition is started, conditional to the decision
taken by the decision maker. Let

pS|Start :Double⩾0

denote the probability that a green transition is started (during the time interval between the
current and the next decision step) given that the decision maker has decided to start it. For a
perfectly effective decision maker, pS|Start would be one.

10If we do not use an argument, we indicate this by prefixing the variable name by an underscore like the variable
t in the definitions of X or Y .
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Let’s assume a 10% chance that a decision to start a green transition fails to be implemented,
perhaps because of inertia of legislation, as discussed above:

pS|Start = 0.9

Consistently, the probability that a green transition is delayed even if the decision maker has
chosen to start it is

pD|Start : Double⩾0

pD|Start = one − pS|Start

Similarly, we denote with pD|Delay and pS|Delay the probabilities that a green transition is delayed
(started) given that the decision maker has decided to delay it. As a first step, we take pS|Delay

to be equal to pD|Start

pD|Delay : Double⩾0

pD|Delay = 0.9

pS|Delay : Double⩾0

pS|Delay = one − pD|Delay

albeit we might want to . . . . We want to make sure that the values of pS|Start, pD|Start, pD|Delay

and pS|Delay are consistent with the assumption (remember the informal description of our stylised
GHG emission process from the introduction) that our decision maker is, up to a certain degree,
effective and require them to fulfil the inequalities

pSpec1 : pD|Start ⩽ pS|Start
pSpec2 : pS|Delay ⩽ pD|Delay

• The probabilities of economic downturns:

In the informal description of the decision process, we said that an essential trait of the decision
process is that

. . . decisions to start a green transition, if implemented, are more likely to yield states
with a low level of economic wealth (L-states) than states with high economic wealth.
This assumption reflects the fact that starting a green transition requires more invest-
ments and costs than just moving to states in which most of the work towards a globally
decarbonised society remains to be done.

We need to formulate this idea in terms of transition probabilities. Let pL|S,DH denote the proba-
bility of transitions to states with a low level of economic wealth (L) given that a green transition
has been started (S ) from delayed states (D) with a high level of economic wealth (H ). Similar
interpretations hold for pL|S,DL, pL|S,SH , pL|S,SL and their counterparts for the cases in which a
green transition has been delayed, pL|D,DH and pL|D,DL. Remember that in our decision process

. . . once a transition has been started, it cannot be halted or reversed by later decisions
or events.

In terms of transition probabilities, this means that we do not need to specify pL|D,SH and pL|D,SL

because the probability of transitions from S -states to D-states is zero. We encode the requirement
that “decisions to start a green transition, if implemented, are more likely to yield states with a
low level of economic wealth (L-states) than states with high economic wealth” by the specification

pSpec3 : pH|S,DH ⩽ pL|S,DH

Because pH|S,DH = 1 − pL|S,DH , this requires pL|S,DH to be greater or equal to 50%. Let’s say
that

pL|S,DH = 0.7
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We also want to express the idea that starting a green transition in a weak economy (perhaps a
sub-optimal decision?) is more likely to yield a weak economy than starting a green transition in
a strong economy

pSpec4 : pL|S,DH ⩽ pL|S,DL

which requires specifying a value of pL|S,DL between 0.7 and 1.0, say

pL|S,DL = 0.9

This fixes the values of pL|S,DH and pL|S,DL for our decision process in the ranges imposed by
the “semantic” constraints pSpec3 and pSpec4 . We discuss how these (and other) transition
probabilities would have to be estimated in a more realistic (as opposed to stylised) GHG emissions
decision process in section 6.

Next, we have to specify the remaining transition probabilities pL|S,SH , pL|S,SL, pL|D,DH and
pL|D,DL. What are meaningful constraints for these? Remember that pL|S,SH and pL|S,SL represent
the probabilities of transitions to low wealth states (L-states) from H and L-states, respectively,
while an already started green transition is accomplished. In this situation, and again because of
the inertia of economic systems, it is reasonable to assume that transitions from H -states (booming
economy) to H -states are more likely than transitions from H -states to L-states and, of course,
the other way round. In formulas:

pSpec5 : pL|S,SH ⩽ pH|S,SH
pSpec6 : pH|S,SL ⩽ pL|S,SL

Again, because pH|S,SH = 1−pL|S,SH (and pH|S,SL = 1−pL|S,SL), this requires pL|S,SH and pL|S,SL
to be below and above 50%, respectively.

In our decision process, a high value of pL|S,SL implies a low probability of recovering from economic
downturns in states in which a transition towards a globally decarbonised society has been started
or has been accomplished.

In more realistic specifications of GHG emission processes, one may want to distinguish between
these two cases, or even to keep track of the time elapsed since a green transition was started and
define the probability of recovering from economic downturns accordingly.

Conversely, a low value of pL|S,SH means high resilience against economic downturns in states
in which a transition towards a globally decarbonised society has been started or has been ac-
complished. In such states, we assume a moderate likelihood of fast recovering from economic
downturns:

pL|S,SL = 0.7

and also a moderate resilience

pL|S,SH = 0.3

Let’s turn the attention to the last two transition probabilities that need to be specified in order
to complete the description of the transitions leading to economic downturns or recoveries. These
are pL|D,DH and pL|D,DL.

The semantics of pL|D,DH and pL|D,DL should meanwhile be clear: pL|D,DH represents the proba-
bility of economic downturns and 1− pL|D,DL the probability of recovering (from economic down-
turns) in states in which a green transition has not already been started. As for their counterparts
discussed above, we have the semantic requirements

pSpec7 : pL|D,DH ⩽ pH|D,DH

pSpec8 : pH|D,DL ⩽ pL|D,DL

with pH|D,DH = 1 − pL|D,DH and pH|D,DL = 1 − pL|D,DL and thus, by the same argument as for
pL|S,SH and pL|S,SL, pL|D,DH and pL|D,DL below and above 50%, respectively.
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How should pL|D,DH and pL|D,DL compare to pL|S,SH and pL|S,SL? Is the likelihood of economic
downturns in states in which a green transition has not already been started higher or lower
than the likelihood of economic downturns in states in which a transition towards a globally
decarbonised society has been started or has been accomplished? Realistic answers to this question
are likely to depend on the decision step and on the time elapsed since the green transition has
been started, see 6. As a first approximation, here we just assume that these probabilities are the
same:

pL|D,DL = pL|S,SL
pL|D,DH = pL|S,SH

This completes the discussion of the probabilities of economic downturns and recoveries.

• The probabilities of commitment to severe impacts from climate change:

The last ingredient that we need to fully specify the transition function of our decision process
are the probabilities of transitions to states that are committed to severe impacts from climate
change. In the introduction, we have stipulated that

. . . we assume that the probability of entering states in which the world is committed to
future severe impacts from climate change is higher in states in which a green transition
has not already been started as compared to states in which a green transition has been
started.

We account for this assumption with four transition probabilities: pU |S,0, pU |D,0, pU |S and pU |D.
The first two represent the probabilities of transitions (from uncommitted states) to uncommitted
states at decision step zero for the cases in which a transitions to a decarbonised economy has
been implemented and delayed, respectively. Similarly, pU |S and pU |D represent the probabilities
of transitions from U -states to U -states at later decision steps. We take the informal specification

. . . delaying transitions to decarbonised economies increases the likelihood of entering
states in which the world is committed to future severe impacts from climate change.

by the letter and, for the sake of simplicity, assume that the whole increase in the likelihood
of entering committed states takes place during the first step of our decision process. This is a
very crude assumption and we will come back to it when we discuss the results of measures of
responsibility in section 7. With these premises (and keeping in mind that pC|S,0 = 1 − pU |S,0,
pC|D,0 = 1− pU |D,0, etc.) our informal specification translates into the constraints:

pSpec9 : pC|S,0 ⩽ pU|S,0
pSpec10 : pC|S,0 ⩽ pC|D,0

pSpec11 : pC|S ⩽ pU|S
pSpec12 : pC|S ⩽ pC|D
pSpec13 : pC|D,0 ⩽ pC|D

For the time being, we set pU |S,0, pU |D,0, pU |S and pU |D,0 to 0.9, 0.7, 0.9 and 0.3, respectively.
In words, we assume a 30% chance of committing to future severe impacts from climate change if
we fail to start a green transition at the first decision step. We assume this chance to increase to
70% at later decision steps. We also assume a 10% chance of severe climate change impacts if we
start a green transition at the first decision step or later.

With the transition probabilities in place, we can now specify the transition function of the
decision process. For illustration, we first discuss the definition of the transition function for one
specific case, before we give a more compact definition based on a Bayesian network.

Recall from Section 2 that the transition function gets as inputs the decision step, the current
state and the current control/decision. Consider the case at step zero in which the (initial) state is
(D ,H ,U ) and the control is Start , i.e. the decision is to start a green transition:

Theory .next Z (D ,H ,U ) Start = mkSimpleProb

B-24



[((D ,H ,U ), pD|Start ∗ pH|D,DH ∗ pU|D,0),

((D ,H ,C ), pD|Start ∗ pH|D,DH ∗ pC|D,0),

((D ,L,U ), pD|Start ∗ pL|D,DH ∗ pU|D,0),

((D ,L,C ), pD|Start ∗ pL|D,DH ∗ pC|D,0),

((S ,H ,U ), pS|Start ∗ pH|S,DH ∗ pU|S,0),

((S ,H ,C ), pS|Start ∗ pH|S,DH ∗ pC|S,0),

((S ,L,U ), pS|Start ∗ pL|S,DH ∗ pU|S,0),

((S ,L,C ), pS|Start ∗ pL|S,DH ∗ pC|S,0)]

The result of the transition is a finite probability distribution on possible next states in which the
probabilities of reaching the respective states are determined in a compositional manner from the
transition probabilities introduced in the previous subsection. We only comment the definition of
the probability of (S ,H ,U ), the state in which a green transition has been started, the economy is
in a wealthy state and the world is not committed to future severe impacts from climate change.
The other states’ probabilities can be interpreted analogously.

The probability of (S ,H ,U ) is defined as the product of three transition probabilities: the
probability that a green transition is actually implemented, given that the decision was to do so
pS|Start; the probability that the economy is in a good state (an H-state) given that a green transition
has been started from an H-state pH|S,DH : the probability of entering states that are not committed
to severe impacts from climate change, again given that a transitions to a decarbonised economy
has been started pU |S,0.

Notice that pC|D,0+pU |D,0 and pC|S,0+pU |S,0 are equal to one by definition of pC|D,0 and pC|S,0.
The same holds for pH|D,DH + pL|D,DH and pH|S,DH + pL|S,DH (by definition of pH|D,DH , pH|S,DH)
and for pD|Start + pS|Start (by definition of pD|Start). It follows that the sum of the probabilities of
next Z DHU Start is one, as one would expect.

It is possible to derive the probability of (S ,H ,U ) (and of all other possible next states) given
the decision to Start a green transition in (D ,H ,U )

pS|Start ∗ pH|S,DH ∗ pU|S,0

rigorously if we represent our stylised decision process as a Bayesian belief network. To this end, it
is useful to introduce some notation from elementary probability theory. Different textbooks adopt
slightly different notations; here, we follow [Mit97] and denote the conditional probability of entering
(S ,H ,U ) given the decision to Start a green transition in (D ,H ,U ) with

P (S ,H ,U | Start ,D ,H ,U )

Thus, our obligation is to show

P (S ,H ,U | Start ,D ,H ,U ) = pS|Start ∗ pH|S,DH ∗ pU|S,0

Let x1, x2 , x3 denote the components of the current state x :X t and x1 ′, x2 ′, x3 ′ the components
of the next state. Thus, for x = (D ,H ,U ), we have x1 = D , x2 = H and x3 = U . As usual, we
denote a decision in x at step t with y :Y t x .

The variables x1, x2 , x3 , y , x1
′, x2 ′, x3 ′ and the decision step t are associated with the nodes

of the Bayesian network of figure 3. The edges of the network encode the notion of conditional
dependency: the arrow between x1 and x2 ′ posits that the probability of transitions to states with
a low (high) economic wealth depends on whether a green transition is currently underway or has
been delayed11.

The conditional probability tables associated with the nodes, encode such probabilities. Thus,
for example, the table associated with x1 ′ posits that the conditional probability of entering S-states
given that the decision (variable y) was to Start a green transition is pS|Start as discussed above.
Similarly, the table associated with x2 ′ encodes the specification that the probability of entering an

11Because of the arrows between x2 and x1 ′ and x2 ′, such probability also depends on whether the current state
of the economy is low or high and on whether a green transition gets started or not.
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Figure 3: Stylised decision process as a Bayesian network.

L-state given that an S-state was entered from a current D- and H-state is pL|S,DH
12.

With a Bayesian network representation of our stylised decision process in place, we can derive

P (S ,H ,U | Start ,D ,H ,U ) = pS|Start ∗ pH|S,DH ∗ pU|S,0

rigorously by equational reasoning. The computation is straightforward but we spell out each single
step for clarity:

P (S ,H ,U | Start ,D ,H ,U )

= -- definition of x1 ′ ... y ... x3

P (x1 ′ = S , x2 ′ = H , x3 ′ = U | y = Start , x1 = D , x2 = H , x3 = U )

= -- definition of conditional probability, set theory

P (x2 ′ = H , x3 ′ = U , x1 ′ = S | y = Start , x1 = D , x2 = H , x3 = U )

= -- chain rule

P (x2 ′ = H | x3 ′ = U , x1 ′ = S , y = Start , x1 = D , x2 = H , x3 = U ) ∗
P (x3 ′ = U , x1 ′ = S | y = Start , x1 = D , x2 = H , x3 = U )

= -- chain rule

P (x2 ′ = H | x3 ′ = U , x1 ′ = S , y = Start , x1 = D , x2 = H , x3 = U ) ∗
P (x3 ′ = U | x1 ′ = S , y = Start , x1 = D , x2 = H , x3 = U ) ∗
P (x1 ′ = S | y = Start , x1 = D , x2 = H , x3 = U )

= -- Bayesian network (conditional independence)

P (x2 ′ = H | x1 ′ = S , x1 = D , x2 = H ) ∗ P (x3 ′ = U | x1 ′ = S , x3 = U ) ∗ P (x1 ′ = S | y = Start)

= -- Bayesian network (tables)

pH|S,DH ∗ pU|S,0 ∗ pS|Start

Similar derivations can be obtained, in terms of the network of Fig. 3, for the other transition
probabilities that define next Z (D ,H ,U ) Start and, in fact, for all the transition probabilities that
define next . Thus, Fig. 3 can be seen as a compact representation of the transition function next of
our stylised decision process.13 The conditional probability tables can be translated into probability

12Notice that the conditional probability table associated with x2 ′ contains an undefined value α. This is because
the probability of entering L (or H) states given that a D-state was entered starting from an S-state is irrelevant: the
probability of transitions from S-states to D-states is zero (remember that we have assumed that green transitions
cannot be halted or reversed by later decisions), as encoded in the third row of the table associated with x1 ′.

13Notice that the causal networks at the core of the storyline approach [She19] are also Bayesian belief networks,
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functions in a straightforward way and then be used to define the transition function next without
having to spell out all individual cases.

We represent the three probability tables from Fig. 3 as follows:

• the probability of transitioning into an S/D-state if the decision is Start/ Delay

condX1 ′ : {t :N} → {x :X t } → Y t x → SimpleProb SD
condX1 ′ {x = (D , x2 , x3 )} Start = mkSimpleProb [(S , pS|Start), (D , pD|Start)]
condX1 ′ {x = (D , x2 , x3 )} Delay = mkSimpleProb [(S , pS|Delay), (D , pD|Delay)]
condX1 ′ {x = (S , x2 , x3 )} () = mkSimpleProb [(S , 1.0), (D , 0.0)]

• the probability of transitioning to an L/H-state, if the next start is an S/D-state and the current
state an S/D-state with with L/H economic wealth (recall from above that α is a placeholder
value for an impossible case):

condX2 ′ :SD → SD → LH → SimpleProb LH
condX2 ′ S D H = mkSimpleProb [(L, pL|S,DH), (H , pH|S,DH)]
condX2 ′ S D L = mkSimpleProb [(L, pL|S,DL), (H , pH|S,DL)]
condX2 ′ S S H = mkSimpleProb [(L, pL|S,SH), (H , pH|S,SH)]
condX2 ′ S S L = mkSimpleProb [(L, pL|S,SL), (H , pH|S,SL)]
condX2 ′ D D H = mkSimpleProb [(L, pL|D,DH), (H , pH|D,DH)]
condX2 ′ D D L = mkSimpleProb [(L, pL|D,DL), (H , pH|D,DL)]
condX2 ′ D S x2 = mkSimpleProb [(L, α), (H , (1.0− α))]

• the probability of transitioning to an U/C-state from an S/D-state at step n :N:

condX3 ′ :UC → SD → N→ SimpleProb UC
condX3 ′ U S Z = mkSimpleProb [(U , pU|S,0), (C , pC|S,0)]
condX3 ′ U S n = mkSimpleProb [(U , pU|S), (C , pC|S) ]
condX3 ′ U D Z = mkSimpleProb [(U , pU|D,0), (C , pC|D,0)]
condX3 ′ U D n = mkSimpleProb [(U , pU|D), (C , pC|D)]
condX3 ′ C x1 n = mkSimpleProb [(U , 0.0), (C , 1.0)]

Based on condX1 ′, condX2 ′ and condX3 ′, we can now compute the conditional probability of a
possible next state.

jointCondProb : (t :N)→ (x :X t)→ (y :Y t x )→ (x :X (S t))→ Double⩾0

jointCondProb t (x1, x2 , x3 ) y (x1 ′, x2 ′, x3 ′) =
prob (condX1 ′ y) x1 ′ ∗ prob (condX2 ′ x1 ′ x1 x2 ) x2 ′ ∗ prob (condX3 ′ x3 x1 ′ t) x3 ′

where the function

prob :Eq A⇒ SimpleProb A→ A→ Double⩾0

returns the probability of an outcome a :A according to a probability distribution spa :SimpleProb A.
Thus, if we return to our example from above with (x1, x2 , x3 ) = (D ,H ,U ) and (x1 ′, x2 ′, x3 ′) =
(S ,H ,U )

prob (condX1 ′ Start) S

is the conditional probability P (x′
1 = S | y = Start) = pS Start,

prob (condX2 ′ S D H ) H

is P (x′
2 = H | x′

1 = S, x1 = D,x2 = H) = pH S DH and

prob (condX3 ′ U S 0) U

is P (x′
3 = U | x3 = U, x′

1 = S, t = 0) = pU S 0.

albeit without a clear-cut distinction between state and control spaces.
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Collecting all of our states into a list

states :List State
states = [(x1, x2 , x3 ) | x1 ← [S ,D ], x2 ← [L,H ], x3 ← [U ,C ] ]

we can then define the transition function uniformly for all inputs using list comprehension:

next : (t :N)→ (x :X t)→ Y t x → M (X (S t))

next t x y =
mkSimpleProb {prf = prf ′ t x y }

[(x ′, p) | x ′ ← states,
p ← [jointCondProb t x y x ′ ],
0.0< toDouble p ]

In standard mathematical notation, writing jointCondProb t x y x ′ as πt,x,y,x′ , the list comprehen-
sion in the definition of next t x y can be understood like a set comprehension defining a set of
state-probability pairs

SPt,x,y = {(x′, p) | x′ ∈ State, p = πt,x,y,x′ , p > 0}

The condition p > 0 ensures that states with zero probability – i.e. impossible next states – are not
included.

6 Interlude: Realistic and stylised processes

Before continuing the technical part of the document, let us clarify the notion of stylised decision
process. As mentioned in the introduction, this notion was originally introduced in [BJI18] to
contrast the one of realistic decision process. This is also the sense in which it has been used in this
report.

For example, in discussing the probability of economic downturns, we have argued that, in the
specification of more realistic GHG emissions decision processes, one might want to distinguish
between states in which a transition towards a globally decarbonised society is ongoing and states
in which the transition has already been accomplished. In the case of ongoing green transitions, one
may want to consider different transition probabilities, perhaps depending on the degree to which
the transition has been accomplished or the time since it was started.

From this angle, more realistic essentially means a larger number of states (remember that, as
discussed in the introduction, the states of a decision process typically represent sets of micro-states
with the latter being detailed descriptions of physical, economic and social conditions), perhaps also
of control options (for example, fast or slow green transitions) and hence more complex transition
functions.

This reductionist approach towards “realism” is paradigmatic of so-called modelling approaches.
In climate policy advice, it has lead to (integrated assessment) models of decision processes based
on high-dimensional state and control spaces and a large number of model parameters [Nor18,
HWFD19].

While this is popular in climate policy assessment and advice, the usage of “realistic” integrated
assessment models (IAM) has also been criticised, among others, because of their poor understand-
ability and limited predictive capability. For example, in [Pin17], it was found that very different
estimates of the “right” social cost of carbon can be “obtained” by setting the values of certain
IAM parameters (for example, discount factors and climate sensitivities) to specific, arbitrary but
“plausible” values and Pindyck even argued that

IAM-based analyses of climate policy create a perception of knowledge and precision that
is illusory and can fool policymakers into thinking that the forecasts the models generate
have some kind of scientific legitimacy [Pin17].
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Similar concerns and the problem that a too strong focus on reliability may be unsuitable for climate
decision making at regional scales, have been discussed in [She19].

Another weakness of IAMs for climate policy is their strong bias towards deterministic modelling.
With very few exceptions, these models assume that decisions (e.g. of starting a global green
transition) are implemented with certainty, that crucial parameterizations of climate processes (like
the equilibrium climate sensitivity) can be estimated accurately and that the costs and the benefits
of future climate changes can be accounted for in suitable “terminal” (salvage, scrap, see [Put14]
section 2.1.3) rewards.

Is there a way of specifying decision processes that are useful for pragmatic climate decision mak-
ing and that avoid the drawbacks of deterministic modelling approaches based on high-dimensional
state spaces?

We believe that this is the case and that, rather than neglecting uncertainty, the way to address
this challenge is to 0) specify low-dimensional state and control spaces that are logically consistent
with the informal description of the specific decision process at stake; 1) explicitly account for the
uncertainties that are known to affect best decisions for that process, 2) exploit the knowledge avail-
able (from past experience, data, model simulation, etc.) to specify trustable transition probabilities
with interpretations that are consistent with that process.

This is the essence of the approach that we have demonstrated in the previous section: starting
from an informal description, we have introduced formal specifications of state and control spaces
that are logically consistent with that description. We have accounted for the uncertainties of the
informal description in terms of twelve transition probability parameters. For each parameter, we
have provided an interpretation together with a range of values compatible with that interpretation.
Within these ranges, we have then chosen certain values and defined the transition function in terms
of those values. For example, we have postulated a 10% chance that a decision to start a green
transition fails to be implemented.

In a (more) realistic specification, this figure could perhaps have been obtained by asking a pool
of experts, perhaps political scientists, historians, etc. Similarly, in more realistic specifications, the
probabilities of recovering from economic downturns might be obtained from climate economists.
These, in turn, might rely on model simulations, expert elicitation or perhaps statistical data. Fi-
nally, climate models (general circulation models, intermediate complexity models, low-dimensional
systems of ordinary differential equations representing global mass and energy budgets) might be
applied to representative micro-states samples of a given (macro) state (for example, our initial state
DHU ) to compute more realistic estimates (for example via Monte Carlo simulations) of transition
probabilities, for instance, to committed states.

From this angle, the approach of “stylised” decision processes is similar to the storyline approach
– the “identification of physically self-consistent, plausible pathways” – proposed in [She19]. The
focus, there on physical consistency and causal networks, is here on logical consistency and decision
networks. Common to both approaches is the need to integrate contributions from very different
disciplines, ranging from theoretical computer science to the social sciences [She19, SMV+21].

In this enterprise, the theory of section 2 and the language extensions discussed in this report
play a twofold role. On the one hand, they help ensuring that results of model simulations, expert
opinions, and statistical data are applied consistently. On the other hand, they make it possible to
reason about pragmatic decision processes in a formal and rigorous way.

7 Generic responsibility measures

In [BBC+21] we introduced generic responsibility measures to answer the following questions:

• What does it mean precisely for decisions to matter?

• Are there general ways to measure how much decisions matter when these have to be taken under
uncertainty?

• Is there a natural way of comparing similar decisions at different times?
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To define a notion of responsibility we use and extend the basic theory for monadic SDPs as
follows:

(S1) The reward function of the SDP is defined based on a specific goal of decision making. For
example, a formal expression of “avoiding states committed to severe climate change impacts”.

(S2) Verified “best” and “conditional worst” decisions are compared at the specific state at which
we want to measure how much decisions matter for the goal encoded in (S1).

(S3) We define a degree of responsibility consistent with this measure.

In [BvH18] three conditions are put forward under which “a person can be ascribed responsibility
for a given outcome”:

(C1) avoidance: it is possible for the person to avoid an performing an action that contributes to
the outcome,

(C2) agency : having the capability to act intentionally, to plan, and to distinguish between desirable
and undesirable outcomes, and

(C3) causal relevance: there is a causal relation between the person’s action and the outcome.

The notion of causality is not uncontroversial [Car95] and its role in formalizations of respon-
sibility has been addressed, among others by [CH04, Hal06] and [Hal14]. Below we show that at
least for sequential decision processes it is possible to define “meaningful” measures of how much
decisions matter without having to deal with causality. We also discuss the relation between these
measures and responsibility measures.

7.1 Illustration of the approach

For concreteness, we illustrate (S1)-(S3) for the decision problem of section 5. The extensions of the
theory discussed in this section, however, are fully generic and can be applied to arbitrary decision
processes. We tackle step one by first discussing conditions under which decisions shall not matter.

(S1)a: When decisions shall not matter. Consider the problem of attributing a non-negative
number to the states of a decision process P :

mMeas : (t :N)→ X t → Double⩾0

The idea is that mMeas P t x represents how much decisions in state x do matter: the larger, the
more decisions in x matter. For the time being, assume that mMeas t x takes values between zero
and one. Under which conditions shall we require it to be zero? First and foremost we would like
mMeas t x to be zero whenever only one option is available to the decision maker in x :

mMeasSpec1 : (t :N)→ (x :X t)→ Singleton (Y t x )→ mMeas t x = zero

Here, we have formalised the condition that only one option is available to the decision maker in x
with the predicate Singleton (Ctrl P t x ).

The specificationmMeasSpec1 is consistent with avoidance, one of the three conditions of [BvH18]
listed above.

(S1)b: Encoding goals of decision making. To measure how much decisions matter, we have
to extend a decision process to a decision problem by providing the definitions of Val , reward , meas,
⊕, ⊑ and zero. In the following, we define these components for our stylised decision process of
Section 5. In our example, we have a stochastic SDP for which the type and structure used for
valuation are simply

Val = Double⩾0

(⊕) = (+)
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zero = 0.0
(⊑ ) = (⩽)

Here, we follow standard decision theory and take meas to be the expected value measure, although
other measures might be used as long as they fulfil the compatibility conditions stated in Section 2.

meas = expectedValue

As a starting point for the definition of the reward function, we identify the goal for which we seek
responsibility measures. In short, we have to say for what we want to measure how much decisions
matter. For example, we might be interested in measuring how much decisions matter for avoiding
states that are committed to severe impacts from climate change. Or perhaps we want to measure how
much decisions matter for avoiding climate change impacts but also economic downturns. Formally,
we may express these goals using the test functions isCommitted and isDisrupted which we defined
in Section 5.

goal : {t :N} → (X t)→ B

with

goal {t } x = isCommitted t x

or

goal {t } x = isCommitted t x ∨ isDisrupted t x

Then we can define the reward function in terms of this goal:

reward t x y x ′ = if goal {t = S t } x ′ then 0.0 else 1.0

In the following, we will use the second definition of goal . In Section 7.2 below, we discuss generic
goal functions and show how to pre-define Val , reward , etc. based on such functions.

(S2): Measuring how much decisions matter. With a goal encoded via the reward function,
we can tackle the problem of measuring how much decisions in a state do matter for that goal.

For concreteness, let’s consider the initial state (D ,H ,U ) of our decision problem. In this state,
the decision maker has two options: start a green transition or further delay it. Remember that
our decision maker is effective only to a certain extent. As shown in figure 3, a decision to start a
green transition may well yield a next state in which the transition has been delayed. According to
Section 5, the probability of this event is pD|Start, that is, 10%.

What does this uncertainty imply for the decision to be taken in the initial state (D ,H ,U )?
Answering this question rigorously requires fixing a decision horizon. This is the number of decision
steps of our decision process that we look ahead in order to measure how much decisions matter.
Remember from section 2 that the value of taking zero decision steps is always zero :Val , a problem-
specific reference value that holds for every decision step and state at that step. Thus, if we look
forward zero steps, no decision matters, independently of the decision step and state. But, for a
strictly positive number of decision steps, we can formulate and rigorously answer the following two
questions

• Is it better, in (D ,H ,U ) to (decide to) start or to delay a green transition?

• How much does this decision matter (for avoiding climate change impacts but also economic
downturns)?

To do so, we first apply the generic backward induction from Section 2 and compute an optimal
sequence of policies ps over the horizon. Recall from Sectionsection:valval that bi computes provably
optimal policy sequences14. This means that no other policy sequence entails better decisions than
ps (here for the goal of avoiding climate change impacts but also economic downturns).

14If ⊑ , ⊕, meas, etc. fulfil the specifications from Section 2.
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Thus, we can compute a best decision and the value (of the sum of the rewards) over a horizon
of n steps for arbitrary states:

best :(t ,n :N)→ X t → String
best t Z x = "The horizon must be greater than zero!"

best t ( S m) x =
let ps = bi (S t) m in
let p = bestExt ps in
let b = p x in
let vb = val (p :: ps) x in
"Horizon, best, value: "++
show (S m) ++ ", "++
showY b ++ ", "++
show vb

What is a best decision in (D ,H ,U ) for a horizon of only one step?

∗ Responsibility > : exec best 0 1 (D ,H ,U )
Horizon, best , value : 1,Delay , 0.468

This is not very surprising: according to the definition of next , the probability of entering states
that are either economically disrupted or committed to severe impacts from climate change is 0.708.
Thus, the expected value of deciding to start a green transition is only

1− 0.708 = 0.292

By contrast, the expected value of deciding to delay a green transition is 0.468, as seen above. As it
turns out, one has to look forward at least over three decision steps (or, in our interpretation, about
three decades) for the decision to start a green transition to become a best decision in (D ,H ,U ).
We can apply the computation

bests :(t :N)→ List N→ X t → IO ()
bests t Nil x = putStrLn "done!"

bests t (n :: ns) x = do putStrLn (best t n x )
bests t ns x

to study how best decisions vary with the horizon. Again, for x = (D ,H ,U ) one obtains:

∗ Responsibility > : exec bests 0 [1 . . 8] (D ,H ,U )
Horizon, best , value : 1,Delay , 0.468
Horizon, best , value : 2,Delay , 0.635454
Horizon, best , value : 3,Start , 0.940669612
Horizon, best , value : 4,Start , 1.250012318344
Horizon, best , value : 5,Start , 1.533635393558128
Horizon, best , value : 6,Start , 1.790773853744118
Horizon, best , value : 7,Start , 2.022874449805313

As anticipated, the decision to start a green transition at the first decision step becomes a best
decision for horizons of three or more decisions. The other way round: our decision maker would
have to be very myopic (or, equivalently very much discount future benefits) to conclude that delaying
a green transition is a best decision in (D ,H ,U ).

But how much does this decision actually matter? To answer this question, we need to compare
a best decision in (D ,H ,U ) for a given time horizon to a worst decision. Again, for concreteness,
let’s for the moment fix the horizon to 7 decision steps.

What is the value (again, in terms of the sum of the rewards associated with avoiding climate
change impacts and economic downturns) of deciding to delay a green transition in (D ,H ,U )? There
are different ways of answering this question, but a canonical one15 is to consider the consequences
of deciding to delay a green transition at the first decision step in (D ,H ,U ) and take later decisions

15We discuss alternative approaches in section 7.3.
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optimally. In our specific problem, this corresponds to assuming that future generations will do their
best to avoid negative impacts from climate change and economic downturns.

If we denote our optimal policy sequence for an horizon of 7 steps by ps, we can compute the
consequences of deciding to delay at the first decision step in (D ,H ,U ) and then take later decisions
optimally by replacing the first policy of ps with one that recommends Delay in (D ,H ,U ):

ps : PolicySeq 0 7
ps = bi 0 7

ps ′ :PolicySeq 0 7
ps ′ = (setInTo (head ps) (D ,H ,U ) Delay) :: tail ps

The function setInTo in the definition of ps ′ is a higher-order primitive: it takes a function (in this
case the first policy of ps), a value in its domain and one in its codomain, and returns a function of
the same type that fulfils the specification

(setInTo f a b) a = b ∧ Not (a = a ′)→ (setInTo f a b) a ′ = f a ′

for all f , a, a ′ and b of appropriate type. With ps ′, we can compute the value of deciding to delay
a green transition at the first decision step in (D ,H ,U ):

∗ Responsibility > : exec show [val ps (D ,H ,U ), val ps ′ (D ,H ,U )]
"[2.022874449805313, 1.672795254555656]"

The difference between the value of ps and the value of ps ′ in (D ,H ,U ) then is a measure of how
much decisions in (D ,H ,U ) matter for avoiding climate change impacts and economic downturns
over a time horizon of 7 decision steps: the bigger this difference, the more the decision matters.

S3: Responsibility measures We have argued that the difference between the value of ps and
the value of ps ′ in (D ,H ,U ), is a measure of how much decisions in (D ,H ,U ) matter for avoiding
climate change impacts and economic downturns over a time horizon of 7 decision steps. This
argument is justified because:

• We have defined optimal policy sequences to be policy sequences that avoid (as well as it gets)
climate change impacts and economic downturns in (S1).

• Over 7 decision steps, ps is a verified optimal policy sequence.

• The best decision in (D ,H ,U ) is to start a green transition:

∗ Responsibility > : exec show (head ps (D ,H ,U ))
"Start"

• ps ′ is a sequence of policies identical to ps except for recommending Delay instead of Start in
(D ,H ,U ) and for the first decision step:

∗ Responsibility > : exec show (head ps ′ (D ,H ,U ))
"Delay"

These facts are sufficient to guarantee that the difference between the value of ps and the value
of ps ′ in (D ,H ,U ) is actually the difference between the value (with respect to goal) of the best
and of the worst decisions that can be taken in (D ,H ,U ).

The computation and the definitions of ps and ps ′ suggest a refinement and an implementation
of the measure of how much decisions matter mMeas put forward in the beginning of this section.
First, we want mMeas to depend on a time horizon n. Second, for the sake of simplicity, we want
mMeas to return plain double precision floating point numbers:

mMeas :(t :N)→ (n :N)→ X t → Double
mMeas t Z x = 0.0
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mMeas t (S m) x = let ps = bi (S t) m in
let v = toDouble (val (bestExt ps :: ps) x ) in
let v ′ = toDouble (val (worstExt ps :: ps) x ) in
v − v ′

Remember that, in (S1), we have encoded the goal of avoiding severe climate change impacts and
economic downturns for which we compute mMeas through a function

reward t x y :X (S t)→ Double⩾0

that returns 0 for next states that are committed to severe climate change impacts and economically
disrupted and 1 otherwise. In this formulation, the value 1 is completely arbitrary: it could be
replaced by any other positive number and perhaps discounted. This suggests that measures of how
much decisions matter should be normalised

mMeas :(t :N)→ (n :N)→ X t → Double
mMeas t Z x = 0.0
mMeas t (S m) x = let ps = bi (S t) m in

let v = toDouble (val (bestExt ps :: ps) x ) in
let v ′ = toDouble (val (worstExt ps :: ps) x ) in
if v 0 then 0 else (v − v ′) / v

Notice that, in states in which the control set is a singleton, any policy has to return the same control.
In particular, the best extension and the worst extension of any policy sequence have to return the
same control. Therefore, mMeas fulfils the avoidance condition of [BvH18] per construction. As a
consequence, in S -states, the measure is always 0, independently of the time horizon:

∗ Responsibility > : exec show (mMeas 0 4 (S ,H ,U ))
"0"

∗ Responsibility > : exec show (mMeas 0 6 (S ,L,C ))
"0"

Notice also that mMeas can be applied to estimate how much decisions matter at later steps of a
decision process. For example, we can assess that, for our decision process and under a fixed time
horizon, decisions in (D ,H ,U ) at decision step 0 matter less than decisions in (D ,H ,U ) at later
steps:

∗ Responsibility > : exec show (mMeas 0 7 (D ,H ,U ))
"0.1730602684132721"

∗ Responsibility > : exec show (mMeas 1 7 (D ,H ,U ))
"0.5673067719100584"

∗ Responsibility > : exec show (mMeas 3 7 (D ,H ,U ))
"0.5673067719100584"

This is not surprising given that the best decision, in (D ,H ,U ) and for a time horizon of 7 decision
steps, is to start a green transition and that, as stipulated in the introduction and specified in
Section 5 through

pSpec9 : pC|D,0 ⩽ pC|D

the probability of entering states in which the world is committed to future severe impacts from
climate change is higher in states in which a green transition has not already been started as
compared to states in which a green transition has been started.

Wrap up. Following (S1), (S2) and (S3), we have introduced a measure of how much decisions
under uncertainty matter that fulfils the requirements for responsibility measures put forward in the
beginning of this section.
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It accounts for all the knowledge which is encoded in the specification of a decision process, it is
defined uniformly for any goal a (real or hypothetical) decision maker may pursue and it is fair in
the sense that all decisions (decision makers) are measured in the same way.

Thus, we introduce mMeas as a first example of responsibility measure. In the next section, we
generalise it by introducing a small DSL for the specification of goals of sequential decision processes
under uncertainty and discuss alternative definitions.

7.2 A syntax for defining goals

Above we have defined the reward function in terms of a function

goal : {t :N} → (X t)→ B

as

reward t x y x ′ = if goal {t = S t } x ′ then 0.0 else 1.0

In [BBC+21], we have defined a first simple DSL for the modular definition of such goals, allowing
to put forward the goal of decision making in a transparent way. Using this syntax, the goal from
above could be expressed as

goal = Avoid isCommitted &&Avoid isDisrupted

Here Avoid is a function that maps Boolean predicates to goals. It is one of the constructors of the
abstract syntax

data Goal :Type where
Exit :Region → Goal
Enter :Region → Goal
StayIn :Region → Goal
Avoid :Region → Goal
(&&) :Goal → Goal → Goal
(∥) :Goal → Goal → Goal
Not :Goal → Goal

to specify goals for decision processes that are informed by notions of sustainable development or
management [HKDM16b, Int18]: such goals are typically phrased in terms of a verb (avoid, exit,
enter, stay within, etc.) and of a region (predicate, subset of states) that encode notions of planetary
boundaries or operational safety16.

In our formalisation, such regions are encoded by

Region :Type
Region = (t :N)→ Subset (X t)

where Subset A is an alias for A → B:

Subset :Type → Type
Subset A = A→ B

Such regions might e.g. be assigned according to information obtained in commitment or tipping
point computations with physical models (this will be further explored in TiPES D6.3, see also
[MMCBB22b, MMCBB22a]).

The syntax allows moreover to combine goals with logical operators. Given the input of the
framework’s reward function (the current and successor states as well as the current control) and a
goal, an evaluation function then assigns a semantic to the syntactic goal expression. The result of
the evaluation is a Boolean value, indicating whether the goal is attained or not. The generic reward
function simply does a case split on this Boolean value and returns a reward of 0 or 1.

16for example, in [HKDM16b], a partitioning of the state space into a sunny region and its dark complement is the
starting point for the construction of a hierarchy of regions: shelters, glades, lakes, trenches and abysses, see figure 1
at page 7.
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eval :Goal → (t :N)→ (x :X t)→ Y t x → X (S t)→ B
eval (Exit r) t x y x ′ = let t ′ = S t in elem t x (r t) ∧ ¬ (elem t ′ x ′ (r t ′))
eval (Enter r) t x y x ′ = let t ′ = S t in ¬ (elem t x (r t)) ∧ elem t ′ x ′ (r t ′)
eval (StayIn r) t x y x ′ = let t ′ = S t in elem t ′ x ′ (r t ′)
eval (Avoid r) t x y x ′ = let t ′ = S t in ¬ (elem t ′ x ′ (r t ′))
eval (g && g ′) t x y x ′ = eval g t x y x ′ ∧ eval g ′ t x y x ′

eval (g ∥ g ′) t x y x ′ = eval g t x y x ′ ∨ eval g ′ t x y x ′

eval (Not g) t x y x ′ = ¬ (eval g t x y x ′)

While the definition of eval is almost straightforward, domain experts do not need to be concerned
with it. They just apply the constructors of Goal to specify the goal of decision making like in the
definition of goal given above. The goal for which we measure how much decisions matter is then
fully transparent and the rewards are a computed by a generic function based on eval goal :

goal :Goal
reward t x y x ′ = if eval goal t x y x ′

then 1.0
else 0.0

In more realistic (as opposed to stylised, see section 6) GHG emissions decision processes, states
are not necessarily either fully committed or fully uncommitted to severe impacts from climate
change and decision makers are confronted with many degrees of commitment, possibly infinitely
many.

A similar situation holds for other predicates on states, like being vulnerable (or adapted) to
climate change or for measures of economic growth or welfare. This raises the question of how to
specify the goals of decision making in decision processes in which predicates like isCommitted do not
return Boolean values but, for example, values in [0, 1]. In this situation, a partitioning of the state
space into regions is not immediately available and the specification of goals requires an extension
both of the syntax Goal for encoding goals and of the interpretation function eval associated with
this syntax.

Another possibility to generalise the simple DSL from above is to allow assigning weights to each
atomic goal, likewise yielding rewards in the unit interval instead of just Boolean values:

UnitInterval :Type
UnitInterval = (d :Double ∗∗ So (0 ⊑ d ∧ d ⊑ 1))

castBD :B→ Double
castBD True = 1.0
castBD False = 0.0

data Goal :Type where
Exit :UnitInterval → Region → Goal
Enter :UnitInterval → Region → Goal
StayIn :UnitInterval → Region → Goal
Avoid :UnitInterval → Region → Goal
(&&) :Goal → Goal → Goal
(∥) :Goal → Goal → Goal
Not :Goal → Goal

eval :Goal → (t :N)→ (x :X t)→ Y t x → X (S t)→ Double -- better: UnitInterval
eval (Exit w r) t x y x ′ = let t ′ = S t in

fst w ∗ castBD (elem t x (r t) ∧ ¬ (elem t ′ x ′ (r t ′)))
eval (Enter w r) t x y x ′ = let t ′ = S t in

fst w ∗ castBD (¬ (elem t x (r t)) ∧ elem t ′ x ′ (r t ′))
eval (StayIn w r) t x y x ′ = let t ′ = S t in fst w ∗ castBD (elem t ′ x ′ (r t ′))
eval (Avoid w r) t x y x ′ = let t ′ = S t in fst w ∗ castBD (¬ (elem t ′ x ′ (r t ′)))
eval (g && g ′) t x y x ′ = min (eval g t x y x ′) (eval g ′ t x y x ′)
eval (g ∥ g ′) t x y x ′ = max (eval g t x y x ′) (eval g ′ t x y x ′)
eval (Not g) t x y x ′ = 1− eval g t x y x ′
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Not that the interpretation of the logical connectives is common for fuzzy logic [Zad75]. However,
one might also want to explore the individual values for multiple goals at the same time without
aggregating them.

w1 :UnitInterval
w1 = (0.4 ∗∗Oh)

w2 :UnitInterval
w2 = (0.3 ∗∗Oh)

goal :Goal
goal = Avoid w1 isCommitted &&Avoid w2 isDisrupted

reward t x y x ′ =
if eval goal t x y x ′ then 1.0 else 0.0

Recall the function trjR of Section 3

trjR : {t ,n :N} → StateCtrlSeq t n → List Val

that computes a list with the rewards at each step. It is useful suitable for exploring the local
fulfilment of goals. For such an exploration, it might be useful to preserve the information about the
outcomes of multiple goals. We can implement this vectors of goals and vectors of doubles as type
of values, instead of defining the reward function in terms of one single goal and resulting number:

dim :N
goals :Vect dim Goal

V al = Vect dim Double
reward t x y x ′ = map (λg ⇒ eval g t x y x ′) goals

Note that in order to compare such multi-goal rewards (for optimisation), they have to either be
aggregated in some way or the comparison is performed according to a priority order on the com-
ponents.

7.3 Some caveats

WithmMeas defined as in section 7 and with goal :Goal specified as above, one can recover the results
for the decision process of section 5. To wrap up, let us discuss a few aspects of the responsibility
measures considered so far.

One important trait of these measures is that they are obtained by extending the decision pro-
cess for which one wants to measure how much decisions matter to a fully specified finite horizon
sequential decision problem. In comparison to approaches like those proposed in [Hal06], [CH04]
and, more recently, [HH20], this approach has both advantages and disadvantages.

From the conceptual point of view, the major advantages are simplicity and straightforwardness:
in contrast to models of causality like those put forward in the works mentioned above, finite horizon
sequential decision problems are conceptually simple and well understood. Also, for finite horizon
sequential decision problems, we can compute provably best and worst policies. This guarantees
that the results obtained for a specific problem are a logical consequence of the assumptions made
for that problem and not of programming errors or numerical errors. Because all the assumptions
underlying a specific problem are put forward explicitly via specifications like

goal = Avoid isCommitted &&Avoid isDisrupted ,

the approach also guarantees high standards of transparency. Simplicity and straightforwardness
are also the main drawbacks of our approach: we can only derive responsibility measures for decision
processes that can be naturally extended to finite horizon sequential decision problems.

This is the case for the stylised GHG emissions decision process discussed throughout our work
and, indeed, for many interesting problems in climate policy because, as pointed out in [Web08]:
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Climate policy decisions are necessarily sequential decisions over time under uncertainty,
given the magnitude of uncertainty in both economic and scientific processes, the decades-
to-centuries time scale of the phenomenon, and the ability to reduce uncertainty and
revise decisions along the way.

But it is not immediately obvious how our approach could be applied to measure how much decisions
matter in situations in which collective decisions emerge from a potentially large number of individual
decisions, e.g., mediated through certain widely accepted mechanisms like majoritarian rules like in
voting processes.

Another important aspect of the measures of responsibility proposed in this work is the compar-
ison between verified best and what we called “conditional worst” decisions at the specific state at
which we want to measure responsibility. Remember that, in the definition of mMeas, v and v ′ are
val (bestExt ps :: ps) x and val (worstExt ps :: ps) x , respectively. Here, x :X t is a state at decision
step t , ps is a verified optimal sequence of policies for taking n decisions starting from step t + 1
and n + 1 is the decision horizon.

Due to the definition of bestExt , generic backward induction and the correctness proof from
section 4, bestExt ps :: ps is an optimal policy sequence and bestExt ps is an optimal policy (a
function from states to controls) at decision step t . Similarly worstExt ps is a policy that guarantees

val (worstExt ps :: ps) x ⊑ val (p :: ps) x

for all x :X t and p :Policy t . In other words, we compare “best” decision (given by bestExt ps)
and ”worst” decision (given by worstExt ps) in x conditional to future decisions being best ones.
This is crucial because the difference between best and worst decisions (and hence our estimates of
how much decisions matter) at a given step and in a give state would in general be different if we
assumed that future decision are not taken optimally.

In the context of our decision problem, for example, we would come up with a different measure
of responsibility for “current” decisions if we assumed that future generations do not care about
avoiding negative impacts from climate change or economic downturns or, equivalently, that they
do care but do not act accordingly. If there are reasons to believe that this is the case, the verified
optimal policy sequence ps in the definition of mMeas has to be replaced with one which is consistent
with such a belief. For example, if we believe that the next generation will act more myopically (or
more farsighted) than for a horizon of n decision steps, we have to compute ps accordingly.

Finally, we want to flag the role of the measure of uncertaintymeas from section 2 in the definition
of val and thus of v and v ′. In all computations shown in this section, we have taken meas to be the
expected value measure but other measures of uncertainty are conceivable and we refer interested
readers to [Ion09, BJI17a] and [BB21].

8 Conclusion

We have developed domain-specific language elements for the study of dynamical systems and spec-
ification of SDP in the context of tipping point research. For better usability, we have implemented
these language elements on top of a lightweight version of the original Botta et al. framework of
[BJI17a]. We have defined generic measures of responsibility and a syntax to transparently express
goals of decision making. We have illustrated the usage of the framework by specifying a conceptual
stochastic green house gas emission problem. Furthermore, we have shown the correctness of the
generic backward induction algorithm implemented in the framework in a more general setting than
commonly considered in control theory. Considering that the aim of the current work is to improve
accountability in the context of climate policy, this correctness result fills an important gap that
had been overlooked in the previously existing verification result for the Botta et al. framework.

Nevertheless, many extensions to the work presented in this report are conceivable. Possible
future work includes the following:

• Defining a syntax for systematic construction of transition functions from conditional probability
functions, possibly following the approach of [Jac15, JZ20]
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• Extending the language for value judgements (e.g. iterated notions of avoidance, reachability
etc.), possibly following ideas for the topological classification of state spaces of [HKDM16b]

• Developing the algebraic theory of SDPs to improve modularity in the description of problems,
extending work started in [KJ19].

• Incorporating notions for multi-objective / multi-stakeholder valuation for SDPs, following the
risk-opportunity-analysis paradigm discussed in [MSV+20]

• Adding language elements for the description of problems with early warning signals (EWS)
[BBCMM22c]
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A note on climate science and climate policy

The TiPES-WP6 team

2021-06-29

Doing the right things
In its fourth Assessment Report (Intergovernmental Panel on Climate Change (IPCC) 2007), the
Intergovernmental Panel on Climate Change (IPCC) has pointed out that responding to climate
change involves “an iterative risk management process that includes both mitigation and adaptation,
taking into account actual and avoided climate change damages, co-benefits, sustainability, equity
and attitudes to risk.”

Fifteen years later, we have to recognize that humanity is far from having implemented such an
“iterative risk management process”, that our scientific understanding of the notions involved in
this process is less than satisfactory and that solutions towards keeping the earth climate within
safe boundaries are difficult to agree upon and implement in practice.

This is not very surprising if one considers that different decision makers, say, countries or coalitions
between countries, are due to experience different (negative and positive) impacts from climate
change, are in very different cultural, economic and technological situations and, perhaps more
importantly, are in competition (if not in war) with each other.

What is perhaps more surprising is that, even within the scientific community, there is little
agreement on how to turn the scientific knowledge distilled in the IPCC Assessment Reports into
advice to policy makers that is pragmatic, transparent and, above all, accountable.

Doing the right things rightly
In spite of a strong focus on quantitative analysis and prediction, climate science has been so
far embarrassingly incapable of providing advice on matters of climate policy that is accountable:
decision makers do not precisely know what kind of outcomes and guarantees they can expect from
implementing the advice received.

This, too, is not very surprising. Applications of the physical sciences, e.g., to engineering or to
public health, heavily rely on empirical methods. Where predictions are necessarily uncertain – e.g.,
because of the lack of well established theories or because of imperfect information – the physicist
(chemist, biologist, etc.) can often turn to experiments, either in a laboratory or on the field.

The evidences obtained in such tests and experiments are recorded in formal protocols, analysed
and perhaps confirmed (or confuted) by other experiments and finally applied to pragmatic decision
making.
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While formal methods cannot fully replace empirical verification, they can provide very high levels
of transparency and contribute towards making political decisions more understandable, more
transparent and more accountable (Botta et al. 2020).

Differences that matter
However, applying formal methods requires both advisors and decision makers to have achieved
a shared understanding of the impacts of uncertainties on decision making (Botta, Jansson, and
Ionescu 2018), of the differences between decision making under uncertainty and decision making
in a deterministic environment and to carefully distinguish between closely related but crucially
different notions. In this section, we discuss some of the differences that matter.

Acting vs. planning.

You have had breakfast and are on your way to your office. You drive the car out of the garage,
fire up Google Maps on your mobile phone, enter your position and select your office as your goal.
You are suggested a route, start driving and follow the suggestions of the routing algorithm. On
your way to the office you get re-routed a couple of times, perhaps because of an accident on the
original route or because you have made a detour to pick-up a colleague who has called you while
you were driving.

In following or rejecting the recommendations of the routing algorithm, you are taking decisions,
one after the other. Some of the these decisions entail judgments about uncertain events. Perhaps
if you pick-up the colleague you might be caught in a traffic jam and miss an important meeting.

At each decision step, you are concerned with making a best decision, one that will get you to the
office in the shortest time. Or, perhaps, one that is safest or one that avoids driving through a
district you hate.

No matter what your aims are, at each decision step you want to take a decision that best matches
your aims. Google Maps is your friend and you have learned how to judge its advice. You start
with a route than you trust being the best possible given the information available at the time
you drive out of the garage. Perhaps you revise your original plan on your way to the office. For
instance, if Google Maps suggests you an alternative route.

In driving and taking decisions on the way to your office, you are acting. In doing so, you are
exploiting the results of another activity: planning.

Planning and acting are closely related but essentially different activities. While driving to the
office, driving decisions follow a plan. But the plan evolves in time, following the decisions.

While planning and acting may take place simultaneously, they are logically distinct activities.
Sometimes, like in the example of driving to the office, planning and acting are concerns of two
different agencies: Google Maps is responsible for planning, you – the driver – for acting.

Often, the same agent is involved in planning and acting, typically at different times.

Another example: tomorrow we want to bike to the countryside. We plan a long tour but the
weather forecast is uncertain. In the morning it should be sunny but in the afternoon there is a
significant chance of thunderstorms. Thunderstorms will come from west and they might align. In
that case, we might get heavy hail.
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We pack our rain clothes into the bicycle bags but we plan to break the tour if the weather gets
really bad by 3pm. We will take a slightly longer route that will allow us to easily reach a train
station if we decide to break the tour before 3pm. In this case, we will come back by train. If
tomorrow morning the weather forecast worsens, we will make a short tour instead and be back for
lunch.

We have made a plan for two decision steps, one tomorrow morning and one tomorrow afternoon.
For each step, we have defined a decision rule: for each possible state (in step one, same/worse
forecast; in step two, weather stable/really bad) we have planned a corresponding action.

Planning under uncertainty

Thus, we have defined two functions, one for each step. Tomorrow morning we will check the
weather forecast, apply the first function and decide whether we go for a long or for a short ride.

It is important to realize that, under uncertainty, planning essentially means defining decisions
functions, one for each decision step. In control theory, these functions are called policies. In game
theory, they are often called strategies or sometimes contingency plans (Puterman 2014).

Thus, when we speak of optimal plans for a specific decision problem (no matter what optimal
means for that specific problem), we speak of optimal policy sequences.

This is in contrast to planning for deterministic decision problem that is, for decision problems
without uncertainty. In this case plans (and, therefore, optimal plans) can be conceived as sequences
of actions.

This is because, in absence of uncertainties, a decision at a given step uniquely defines the conditions
under which the next decision step takes place.

It goes without saying that, in most realistic situations, planning takes place under uncertainty.
Ignoring uncertainties can lead to inefficiencies and fragile planning, as sometimes observed in
planned economies.

In practical climate decision problems, decisions are taken sequentially and uncertainties are
typically unavoidable (Webster 2000), (Webster 2008). They are a consequence of imperfect
scientific knowledge but also, and more importantly, of political instability, inertia of legislations
and of the intrinsic uncertainty of technological innovation.

Even if we assumed a perfect scientific knowledge of the processes that determine the impacts of
GHG emissions on the climate, planning for GHG emission problems would still have to account
for these uncertainties.

From this angle, speaking of “emission paths” (in contrast to emission policies or, perhaps more
explicitly, of emission decision functions) suggests a fundamental misunderstanding of the problem
at stake: no “optimal” emission path can be a meaningful answer to the problem of planning “good”
decisions in, e.g. solar radiation management problems (Moreno-Cruz and Keith 2012), (Helwegen
et al. 2019), (Nordhaus 2019).

As planning under uncertainty means defining policies that is, decisions functions, for each decision
step, what are the domains and the codomains of such functions?

For a given decision step, the domain of a policy consists of the set of the observations that can be
done at that step and that are relevant to decision making.
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For tomorrow’s morning decision step, we have contemplated only two possible observations: that
the weather forecast has worsened or that the weather forecast is unchanged. Perhaps we should
also consider the possibility that the weather forecast improves and, in that case, leave our rain
clothes at home. We might want to make even more realistic plans and consider the possibility that
tomorrow morning we feel very tired or lazy and decide to stay home no matter how the weather
will be. No matter how the possible observations looks like, in decision theory, they are called the
set of possible states.

The codomain of a decision function – a policy – is typically different in different states. In a given
state, it consists of all the actions (options) that can be done in that state.

In our plan for tomorrow, the options are to go for the short tour or to go for the long one in both
states. The policy that will guide our decisions is to go for the long tour if the weather forecast is
unchanged and for the short ride if it has worsened.

In control theory, the set of actions (options) considered in a given state is called the controls set
for that state.

Acting under uncertainty: optimality and regret.

We have seen that planning under uncertainty means finding sequences of policies or, in other
words, sequences of decision functions.

Sometimes, we can estimate the (uncertain) consequences of acting according to a fixed sequence
of decision functions. For instance, we can compute the possible trajectories associated with taking
decision according to the policy sequence and perhaps even their probabilities.

If we are also able to attach values to possible trajectories, we can often compute so-called optimal
policies.

The measure of uncertainty accounts for how decision makers aggregate the (uncertain) values
associated with the possible trajectories. For example, a risk-neutral decision maker might measure
stochastic-uncertainty according to the expected-value measure. In the same situation, a risk-averse
decision maker might adopt a measure that minimizes the probability of worst outcomes.

What can a decision maker expect from actually taking decisions according to an optimal sequences
of decision functions? Can optimality avoid regret?

Unfortunately, this is not the case. Even if we follow provably optimal decision rules, we can always
have bad luck and take a decision that in hindsight we might regret: avoiding smoking and regularly
go biking does not guarantee one not to die from lung cancer. Still, it’s a better policy than chain
smoking and sitting the whole day in front of a computer.

This is another important difference between decision making under uncertainty and decision
making in a deterministic environment: in the deterministic case optimal decisions do indeed
guarantee regret-free decision making.

What to do and how to do it.

Another difference that must be kept in mind when considering the problem of applying climate
science to policy making is that between what to do and how to do it.
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Consider, for example, the guideline on global GHG emissions at page 19 of the summary for
policy makers of the IPCC special report on global warming of 1.5 °C (Intergovernmental Panel on
Climate Change (IPCC) 2018):

The blue corridor entails emission paths that, according to the knowledge available at the point
in time in which the summary was prepared, limit global warming to 1.5 °C with no or limited
overshooting.

The summary and, specifically, the corridor provides crucial information to decision makers. However
it does not attempt at answering the question of how to actually implement an emission path
that is consistent with the “safe” emission corridor. Answering this question has very different
dimensions that can hardly be covered within climate science.

Along one such dimensions we have the problem of finding sequences of policies (or decision rules,
see section Planning under uncertainty) that support pragmatic decisions (e.g., on GHG abatement
targets at a given point in time and in a given state) that are likely to yield global GHG emissions
within the “safe” corridor. The focus here is on likely: global decision are necessarily uncertain
(Rougier and Crucifix 2018) and every attempt at finding realistic policy sequences has to account
for such uncertainties. Tackling the problem of finding policy sequences under uncertainty requires
contributions from, among others, control theory, expert elicitation, computer science and of course
climate science (Webster 2000), (Botta, Jansson, and Ionescu 2017), (Webster 2008), (Helwegen et
al. 2019), (Heitzig et al. 2016), (Botta, Jansson, and Ionescu 2018).

Another obvious dimension of the problem of applying global guidelines to policy making entails
the question of how to actually get decision makers (countries) that are likely to experience different
(negative and positive) impacts from climate change and that are in competition with each other to
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actually coordinate and cooperate to achieve global goals. The question is at the border between
moral philosophy (Hardin 1968), (Ockenfels, Werner, and Edenhofer 2020), game theory (Heitzig
2012) and economics. Recently formal methods have been proposed as a means of improving the
accountability of mechanism (rules) that are designed to fulfill well defined specifications (Caminati
et al. 2015), (Rowat, Kerber, and Lange-Bever 2016).

Finally, a crucial dimension of the how to do it problem is technological: is it meaningful to
complement unavoidable GHG emissions reductions with solar radiation management measures?
Will nuclear fusion and GHG sequestration arrive in time to mitigate the impacts of fossil fuel
economies?

The bottom line
At the interface between climate science and climate policy there is plenty of opportunities for
confusion and misunderstandings. We have flagged differences that matter and that is worth
keeping in mind when discussing how to turn scientific knowledge into advice to policy makers.
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A note on climate science and verified programming

The TiPES-WP6 team with Cezar Ionescu and Patrik Jansson

Parts of this note have been taken almost verbatim from (Ionescu et al., 2018) and (Botta et al., 2017).

Verified programming: what is that?
The approach of work package 6 “Understand and communicate the impacts of Tipping Point
uncertainties on accountable policies” (WP6) of the H2020 EU TiPES “Tipping Points in the
Earth System” project is based on three pillars: climate science, decision theory and verified
programming.
Most climate scientists will agree that understanding and communicating the impacts of tipping
point uncertainties on climate policies requires contributions from climate science. And many
will agree that understanding the impacts of uncertainties on climate policies (no matter whether
these are about the presence or the magnitude of abrupt transitions or about the value of model
parameters at which structural changes in relevant features of the model take place) requires some
understanding of the decision processes for which such policies are envisaged and, hence, of decision
theory1.

But what has verified programming to do with all this? What has verified programming to do with
climate science, and, most importantly, what is verified programming and who needs it?

Who needs verified programming?
In a nutshell, verified programming is a methodology for writing programs that can be checked to
be correct by a type checker.

A type checker is itself a program (perhaps written in a language that is not that of the programs
it checks) and a program is correct if it fulfills a specification. For example, a specification for a
program R that is meant to compute square roots of positive real numbers might look like

∀x ∈ R, 0 ≤ x⇒ R(x) ∗R(x) = x (1)

Some machinery is needed in order to turn (1) into a formal statement that a type checker can
actually process. Also, the notion that a square root program R is correct if it can be shown to

1Decision theory is a rather broad notion. Accountable climate policy advice necessarily requires contributions
from different disciplines including, among others, control theory, expert elicitation and game theory. In TiPES
WP6 we will follow (Webster, 2000), (Webster, 2008) and focus of control theory and sequential decision problems
under non-deterministic and stochastic uncertainty, see (Botta et al., 2020).
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fulfill (1) by a type checker is not without problems: what if the type checker itself is incorrect?
And what does this mean? These are interesting and relevant question but we do not need to be
concerned with them here.

For the purpose of this discussion, we only need to realize that (1) assigns a meaning to R. It is a
precise and yet concise, description of what R is required to do. It is certainly more concise and
more understandable than R itself can possibly be, especially when R is written in an imperative
programming language2.

If the type checker verifies R to fulfill (1), we can be sure that, as long as x is non-negative and R
terminates on x, R(x) is a square root of x.

This is quite something but if we are paying a lot of money for somebody to implement R, we
might want to get a little bit more for our money. First, we might want R to always terminate, or,
at least, to terminate for values of x in a suitable range. Second, we might want to make sure that
R always delivers a positive root. Nothing in our specification so far prevents R to deliver -1 for 1
and 2 for 4!

If we demand more from R, we will typically have to pay more as the implementor will face a more
difficult task. The strength of a specification is a crucial trait of the contract between the client
of a program, say P , and the developer of P . The latter is always free to deliver a program that
meets stronger requirements S ′ than those agreed on in the specification S

S ′(P )⇒ S(P ) (2)

Symmetrically, the client is free to accept programs that deliver less than agreed on:

S ′′(P )⇐ S(P ) (3)

But delivering less than what has been agreed on in the specification (or requiring more) is a
potential source of conflicts and perhaps court disputes.

Another source of potential misunderstanding are impossible specifications. Often, the client simply
demands too much. In the case of the square root function, for instance, demanding R(x) ∗R(x) to
be exactly equal to x is too much if R has to terminate and can thus only compute approximations
of irrational roots. Impossible specifications are another potential source of misunderstandings
and should be avoided. Program that fulfill impossible specifications are often called miracles, see
(Morgan, 1990).

2With a slight oversimplification, there are two distinct families of programming languages: imperative and
functional. Examples of imperative languages are FORTRAN, C, C++, Java. Examples of functional languages are
Haskell, Agda, Coq (The Coq Development Team, 2020), Idris. Imperative programming is a method of specifying
what a computing machine shall do in terms of instructions and execution procedures. In functional programming,
one specifies what a computing machine shall do in terms of functions and their application and composition, with
an emphasis on inductive definitions and algebraic structure. In functional languages, the expression a = b has the
same meaning as in mathematics. In imperative programming this is not the case and instructions like a = 1; a =
3 are valid in spite of the fact that 1 is not equal to 3.
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The discussion above should have made clear that verified programming is also (perhaps mainly)
about being precise about the computations that a program shall perform. As a first step, this is
done by putting forward mathematical specifications. In turn, these assign precise meanings to
programs.

Indeed, one of the first papers on verified programming was Floyd’s 1967 “Assigning Meaning to
Programs” paper (Floyd, 1967). It is one of the seminal papers in computer science that still inform
modern program verification.

Today, all programs that somehow matter – program that control medical equipment, financial
transactions, weapons, access to critical data, power plants, air control systems, etc. – rely on some
form of formal verification.

But who does actually need verified programming in science? What does it have to do with scientific
computing? Do numerical analysts need to verify their programs? What about climate scientists?

It is probably fair to say that, as long as scientists are operating in a purely academic environment,
they do not need to care about program verification: no university teacher is likely to loose her job
because of a programming error.

Still, there are prominent examples of scientific claims that have been founded on programming
errors (no citations here!). And in absence of clear, unambiguous specifications, even careful
physical experiments and testing can easily lead to severe, regrettable consequences (Wikipedia,
2020b), (Lions and others, 1996), (Wikipedia, 2020a).

So do we all need verified programming? The answer is yes, but at different dosages.

As long as we are working on problems that are very well understood, program verification does
probably not need to be our major concern. Precise specifications could still save us a lot of tedious
work and time but, as long as we are implementing a new discretization for the Navier-Stokes
equation, perhaps one that accounts for some insights from asymptotic analysis, we can rely on a
whole body of knowledge and theoretical understanding of the problem at stake. In these cases, we
indeed rely on very precise, albeit in most cases implicit, specifications. The same holds when our
program is meant to deal with stiff ordinary differential equations or when we are implementing
multi-grid methods for solving elliptic partial differential equations.

Things start to become different when we move from numerical methods for, e.g., the Euler equations
to numerical methods for weather prediction or, even worse, global circulation models (GCM).

Here, the air starts to become thinner and our safety network less reliable. We can try to compensate
for the lack of general results with careful testing. But tests can only show the presence of errors,
not their absence: in front of unexpected results and without verified programs, we cannot know
whether we are confronted with model deficiencies or with errors in the implementations of the
models. In this situation, model validation becomes impossible.

Things get worse when we move from GCMs to intermediate complexity models and at the latest
when we get to integrated assessment models or, even worse, non-deterministic or stochastic
agent-based models or models for decision making, program verification becomes mandatory.

But is it not enough to test our models? Cannot we simply test our square root program R on a
sample of inputs that is representative of the values for which we want to compute square roots?
We answer this question in the next section.
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Testing vs. proving
There are basically two methodologies for assessing that a program behaves according to a specifi-
cation: testing and proving (Ionescu and Jansson, 2013).

In testing, a program is required to pass a finite number of tests in order to be positively verified.
In proving, the program has to be shown to fulfill a formal specification.

In engineering and industrial applications, testing is well supported (Claessen and Hughes, 2000).
It has a strong historical record of successes interspersed with a few dramatic failures (Wikipedia,
2020b), (Lions and others, 1996), (Wikipedia, 2020a).

Testing and proving are complementary methods. Testing can show the presence of errors, proving
can show their absence. When can we test, when do we have to prove?

Discussing these questions goes beyond the scope of this note, but notice another crucial difference
between testing and proving: testing a program P requires running P . By contrast, proving that
P fulfills a specification does not require running P .

Thus, when available, proving is the method of choice when running a program takes a lot of time
or is very expensive or dangerous. The other way round, when running a program is cheap and
safe, testing is a viable choice.

It is also worth noticing that there are cases in which testing and proving are equivalent and thus,
testing can indeed ascertain the absence of errors. Can you see when this is the case?

No matter whether we are trying to assess the correctness of a program by tests or formal proofs,
we always need a specification. For our square root program R, for instance, we need something
like (1). In absence of specifications, we do not know how to test R and also we do not know how
to prove that R is correct.

This note is about verified programming and we are not insisting on testing here. However, given
the importance of modelling in climate science, let us flag the role of design-by-contract as a method
for developing and testing models.

In a nutshell, design-by-contract is a method for encoding program specifications in run-time tests.
The methodology has been popularized in the late eighties, mainly through the work of Bertrand
Meyer (Meyer, 1986), (Meyer, 1997), (Meyer, 1992), see also (Meyer, 2020). It allows programmers
to specify and document programming tasks and to detect failures to comply with the specification
at run time.

If you write programs in, among others, D, Eiffel, Fortress, Scala or Clojure, you can rely on
native support for design-by-contract patterns. If you code in C, C++, Java or Python, check
language-specific libraries for contract, e.g., (Caminiti, 2020) for C++. For other programming
languages, see examples of design-by-contract patterns implemented via assertions on (RosettaCode,
2020).

Design-by-contract cannot guarantee that programs are correct. But it can signal the presence of
errors and this has lead to significantly faster and more understandable software development.

A further step toward building programs from verified components has been achieved through
Quickcheck (Claessen and Hughes, 2000). Quickcheck is a combinator library. It has been designed
to assist program testing and is available in most programming languages, see (Wikipedia, 2020c).
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Proving: verified programming
How do we actually verify that a program fulfills a specification? This is typically done within a
specification language and using computer-assisted formal methods.

Until about two decades ago, programs were written and specified in different languages: program-
ming languages and specification languages like Z (Bowen, 1996), VDM (Jones, 1990), B (Abrial,
1996) or Maude (Clavel et al., 2007).

Today, we can rely on a unified framework for program specification and program implementation,
one that is mature (several decades old), with solid implementations (NuPRL (Allen et al., 2006),
Coq (The Coq Development Team, 2020), Agda (Norell, 2007), Idris (Brady, 2017), Lean (de Moura
et al., 2015)), and impeccable mathematical credentials: Dependent Type Theory.

In short, Dependent Type Theory (in the following just “Type Theory”) is a pure functional
programming language with a static type system. It is similar to Haskell (Kees Doets and Eijck,
2004), (Bird, 2014), and stands in roughly the same relation to it as predicate logic to propositional
logic (Moschovakis, 2018). Type Theory was developed by the Swedish mathematician and
philosopher Per Martin-Löf (Martin-Löf, 1984), who intended it to have the same foundational
role for intuitionistic mathematics that set theory expressed in predicate logic had for classical
mathematics.

This is not the place for a presentation of Type Theory, for a particularly accessible one, see
(Altenkirch, 2017). What we want to do here is to provide an intuition for why Type Theory
provides an environment for both program specification and program implementation and for how
this environment is used in program verification.

We start by recalling that set theory derives its foundational role in classical mathematics from its
ability to represent properties in several different (equivalent) ways, within a first-order language.
For example, given a property P over a set A, expressed as a formula in the first-order language of
sets, we can view it as a

• set P = {a | P a}, a ∈ P iff a has the property P

• Boolean-valued function: P : A→ Bool, P a = True iff a has the property P

• set-valued function: P : A→ {{}, {∗}}, P a = {∗} iff a has the property P

All these allow us to talk about the property within the theory: it becomes an element of the
universe of discourse. If we take types in programming languages to be the analogues of sets in set
theory, we can see that the available means for their construction are more restricted. In common
with other functional programming languages, Type Theory allows the construction of inductive
types. For example

Z : Nat

n : Nat

S n : Nat

and

data Nat : Type where
Z : Nat
S : Nat -> Nat
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are two equivalent ways of expressing the familiar rules for the inductive construction of the natural
numbers: zero (Z, Z) is a natural number; if n is a natural number then the successor of n (S n, S
n) is a natural number, etc.

The first definition is written using inference rules - this is how the rules of logical proof systems
are commonly presented (Plato, 2018); the other one is written in the style of Haskell, Agda, or
Idris. In most programming languages, we can represent properties as Boolean-valued predicates.
For example in Haskell:

isEven : Nat -> Bool
isEven Z = True
isEven (S Z) = False
isEven (S (S m)) = isEven m

In most cases, however, we cannot represent the associated set as a datatype or as a type-valued
function. Therefore, if a function requires its argument to be even, then the best we can do is to guard
the call of the function with a run-time test. This leads to expressing requirements or specifications
as tests, as in test-driven development methods or, as discussed above, design-by-contract.

In contrast, in Type Theory, we have the additional possibility of representing a property by a
type-valued function (a type family), which corresponds to the set-valued version in set theory. For
example

data Even : Nat -> Type where
MkEven : (k : Nat) -> Even (2 * k)

is a way of expressing the type-valued function version of isEven. For every natural number n,
Even n is a type. If n is not even, then the type will be empty. Otherwise, the type will have one
element, namely MkEven (n / 2).

If a function requires its argument to be even, we can now formulate this requirement at the level
of its type, for instance

f : (n : Nat) -> Even n -> X

In order to call f with an argument n, we have to supply another argument of type Even n. We
can only do that if n is Even, since otherwise Even n would be empty. This additional argument
must be reducible to the form MkEven k, where k = n / 2, and this can be checked at compile
time (or, rather, at “type-checking time”). This ensures that f will never give rise to a run-time
error, a much stronger guarantee than we can enforce by means of tests.

The ability to define inductive data types and type families lends Type Theory a surprisingly strong
expressive power, equal to that of classical higher-order logic. Note, however, that the only formulas
we can prove are those of constructive mathematics: the logic of Type Theory is intuitionistic
which means that we cannot rely on classical axioms such as excluded middle (A ∨ ¬A) or double
negation elimination (¬¬A⇒ A).

When it comes to specifications of programs, this is not a bug, but rather a feature. The requirements
on a program can be expressed at the level of types, for example

f : (x : X) -> Pre x -> Sigma (y : Y) (Post x y)

is the type of a function that takes as input elements of a type X having the property Pre, and
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delivers elements of a type Y which are in the relation Post with the input. The Sigma in the
return type of f represents a dependent pair: this consists of a value y : Y and of a value of type
Post x y, depending both on x and on y.

After a long detour on Type Theory, we can finally answer the question stated at the beginning of
this paragraph: “How do we actually verify that a program fulfills a specification?” This is done by
implementing another program. For example, a verified implementation of our square-root program
R would consist of the function itself

R : (x : Double) -> 0 <= x -> Double

and of another function

sqrtR : (x : Double) -> 0 <= x -> R(x) * R(x) = x

Notice that the type of sqrtR (R is a square-root function) encodes the logical proposition (1)
with R replaced by Double. If an implementation of sqrtR can be type-checked to be total (to
terminate for every input x : Double and for every evidence that 0 <= x) it is in every respect
a proof that R is a square-root function and the equivalence between implementing sqrtR and
proving the corresponding logical proposition has been established rigorously (Wadler, 2015).

As already discussed, implementing sqrtR in this form is impossible and the equality R(x) * R(x)
= x has to be weakened to equality up to a suitable tolerance.

The example shows that even expressing specifications for (let apart verifying) functions that
perform floating point operations is not a trivial task. Indeed, as of yet we cannot rely on an
easy-to-use form of validated numerics (Tucker, 2011) - this is still an area of on-going research
(see e.g. (Boldo and Melquiond, 2017) to get an idea of the current state of the art).

Perhaps not surprisingly, the approach to program specification and verification based on Type
Theory works extremely well for all what is not directly based on floating point computations.

It has been successfully applied in e.g., producing a verified C compiler, CompCert (Leroy, 2009);
developing database access libraries which statically guarantee that queries are consistent with the
schema of the underlying database (Oury and Swierstra, 2008); implementing secure distributed
programming (Swamy et al., 2011); implementing resource-safe programs (Morgenstern and Licata,
2010), (Brady and Hammond, 2012); and many others.

In TiPES WP6, we apply verified methods to provide decision makers with policies that are
machine-checked to be optimal. We discuss why in the next section.

Formal methods as a surrogate for empirical evidences
We have argued that as we move away from well understood problems to climate models, integrated
assessment models, agent-based models and, more generally, methods for climate policy advice,
program verification becomes mandatory.

But, in science and engineering, we have plenty of examples of programs that are not verified
and yet are successfully applied to inform policy advice. For instance, deep neural networks are
routinely applied for decision making in routing problems, gaming, and medical screening.

Cannot we provide accountable policy advice without having to care about program verification?
This is a very legitimate question that needs to be addressed with some care.
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Ideally, we would like climate policy advice to be based on empirical evidences. This is not only
because our understanding of the climate system is far from being perfect.

Most importantly, we know that optimal decisions in matters of climate policy necessarily depend on
uncertainties that we can hardly estimate: how likely is it that decisions about emission reductions
taken, say, by the EU, are actually going to be implemented over the next decade? What about
decisions taken by China or by the USA?

We all know too well that facts do not always follow decisions and that, more than often, taken
decisions are not implemented or are implemented with delays. Legislations have large inertia and
governments do not always manage to comply with their own decisions.

We know that these uncertainties, but also uncertainties on the consequences of trespassing critical
climate thresholds or on the collateral effects of geo-engineering approaches towards mitigating the
impacts of climate change, do have an impact on optimal emission policies.

In other words, we know (for sure because we have obtained these assessments by applying verified
methods) that decisions on emissions that are optimal when we assume these uncertainties to be
zero become sub-optimal when we account for these uncertainties properly (Botta et al., 2018).

Thus, we would like climate policy advice to be based on empirical evidences. But gathering
empirical evidences in matters of climate policy is nearly impossible!

Not even global players like China or the USA can afford to perform large scale, carefully designed
social experiments in order to assess the effectiveness of, say, carbon taxation schemes. We cannot
test two or three carbon taxation schemes on a couple of EU countries to find out which one would
be best to adopt on a larger scale.

In other words, we have to advise decision makers without being able to rely on empirical evidences.
This is unfortunate but hardly avoidable. In this situation, the only guarantees that we can provide
to decision makers come from verified methods. This is not a peculiarity of policy advice in matters
of climate: advising governments on how to auction radio frequencies or internet domains (Caminati
et al., 2015) faces similar problems, and similar problems are also encountered in policy advice
on matters on epidemics, financial markets and taxation and security. Not surprisingly, these
are application domains in which formal methods are routinely applied to provide some form of
accountability in absence of empirical evidences. They are not ideal but certainly better than
nothing.

The bottom line
The main purpose of this note was to discuss why verified programming and formal methods are at
the core of the WP6 approach towards “Understanding and communicating the impacts of Tipping
Point uncertainties on accountable policies”.

We have pointed out the roles of program specification, testing and verification in program
development and argued that Type Theory is a useful approach for verified programming.

But most of what we have discussed remains true if we replace the word program with the word
problem3!

3Indeed, as early as 1932, Kolmogorov showed in a short paper (Kolmogoroff, 1932) (written in German!) that
the rules of intuitionistic logic – the logic of Type Theory – can be interpreted as rules of “problem computation”
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Thus, this note also points to the fact that Type Theory can be applied as a methodology for
understanding and formulating problems and as a vehicle for communication between computer
scientists and scientists from other disciplines.

It hopefully also points to the fact that the main role of computer science is not confined to the
execution of arithmetical operations or sending data over networks, but is rather to be found in the
formulation of concepts, identification and resolution of ambiguities, and, above all, in making our
ideas clear.
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Decision theory and climate policy

The TiPES-WP6 team

2021-07-09

Climate science contributes to decision making in matters of climate policy by providing estimates
of the possible impacts of human activities (mainly due to greenhouse gas emissions but also large
scale exploitation of land and water resources) on the climate and, the other way round, of the
possible impacts of climate change on societies.

Possible impacts (either of human activities on the climate or the other way round) are called
scenarios and the main methodology for generating scenarios in climate science is developing
computer-based models and performing model simulations.

While climate models can, up to a certain extent, be validated on the basis of indirect observations
of past climates (paleo-climatology) and of a growing amount of direct observations and the
(conditional) probabilities of different climate change scenarios (for given anthropogenic forcings)
can be estimated, assessing the feedback of climate change on societies is more controversial and
requires more interdisciplinary efforts.

Because of this asymmetry, climate science has been so far incapable of providing advice on matters
of climate policy that is accountable: decision makers do not precisely know what kind of guarantees
they can expect from implementing the advice received.

Integrated assessment models (IAMs) of climate change of the kind discussed in (Nordhaus 2018)
have been successfully applied to inform decision making but they have also been criticized, mainly
because of three reasons: 1) their lack of predictive capability; 2) their reliance on cost-benefit
analysis and marginality assumptions and 3) their focus on deterministic sequential decision
problems.

While it is true that relevant IAM outputs (for example a social price of carbon) critically depend on
the values of model parameters (climate sensitivity, discount factors) that can hardly be estimated
reliably (Pindyck 2017), the lack of predictive capability is not the main reason of concern: IAMs
are finally not applied for predicting the impacts of climate change on societies but rather for
comparing and understanding such impacts.

The reliance of IAMs on marginality (Sharpe and Nijsse 2021) assumptions, cost-benefit analysis and
deterministic sequential decision problems, however, are more concerning limitations: cost-benefit
analysis requires monetizing the possible impacts of climate change on societies but we do not know
how to fairly price these impacts. And the fact that we also do not know how to reliably attach
probabilities to impacts of climate change should not be a justification for falsely assuming them to
be known with certainty!

More realistic approaches towards rationalizing climate decisions on GHG emissions attempt at
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accounting for multi-objective notions of optimality (Carlino et al. 2020) in optimal control or for
the impact of uncertainties, e.g. on the inertia of legislations and the capability of (global!) decision
makers to actually implement decisions (Botta, Jansson, and Ionescu 2018) and on solar radiation
management options (Moreno-Cruz and Keith 2012), (Helwegen et al. 2019).

While these approaches can help understanding how uncertainty and the attitude of decision makers
towards uncertainties (risk neutral, risk averse, etc.) affect “best” global decisions and can also
help clarify the trade-offs made when defining what is “best”, they do not tackle the problem of
how independent decision makers in a competitive environment can actually coordinate and agree
to implement such decisions.

Answering this question requires integrating, among others, optimal control theory, game theory,
political science, climate economics and formal methods and is a relatively new research area
(Heitzig, Lessmann, and Zou 2011), (Heitzig 2012).

In a nutshell: decision theory (or, better, decision theories) play a crucial role for accountable,
pragmatic decision making in matters of climate policies.

At this point, however, their most valuable contribution is perhaps to make clear (to policy advisors,
decision makers and, by large, to the civil society), the assumptions implicit in rationalizing decision
making in matters of climate policy and the fact that best decisions crucially depend on what we
are set to achieve on which time scale, on our attitude with respect to risk and on uncertainties
that we can hardly estimate, let apart avoid.
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