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Summary for publication 
 
This publication provides teaching material for an introductory course on functional and dependently 
typed programming and its application to verified decision-making in the context of climate science, 
using the computational theory of policy advice and avoidability developed by Botta et al.([1], [3]). 
 
The course consists of 11 regular lectures and 2 extra lectures. The regular lectures consist of three main 
parts:  
 

1. an introduction motivating the use of formal methods from theoretical computer science in 
climate science,  

2. an introduction to mathematical specification, functional and dependently typed programming, 
and computer-verified proofs,  

3. an introduction to the Botta et al. framework for decision-making under uncertainty in the 
context of climate science, including an example application of the framework as in [2]. 

 
The extra lectures provide some theoretical background to the topics covered in the main lectures: 
 

1. an introduction to formal logic and the correspondence between proofs in constructive logic 
and programs in dependently typed programming languages, 

2. an introduction to the notions of functor and monad from the perspective of category theory. 
These play an important role in the Botta et al. framework. 

 
Part 1 of the regular lectures and the two extra lectures are provided as presentation slides. Parts 2 and 
3 of the regular lectures are included in this document as lecture notes, but they are also available at [4] 
as “literate” Idris [5] source code files which can be machine-checked (“type-checked”) and compiled, 
and from which the lecture notes can be generated automatically using the tool lhs2tex [6]. 

 

Work carried out 
 
This document WP6 D6.1 (D27) contains the accompanying material for the course on functional and 
dependently typed programming languages given by Nicola Botta and Nuria Brede at UCL in 
November;25-29, 2019 and March;02-06, 2020. The course notes were prepared by Nicola Botta and 
Nuria Brede and benefited from the interaction with Michel Crucifix and Marina Montero Martínez during 
the course. 
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Contribution to the top-level objectives of TiPES 
 

This deliverable contributes to the achievement of Objective 5 (O5) - Bridge the gap between climate 

science and policy advice by providing introductory course material to the formal framework which is 
used as basis for tasks T6.1, T6.2 and T6.3 which all work towards O5 by linking Tipping Point uncertainty 
and accountable decision making.  

With the overall objective to employ methods from theoretical computer science towards accountable 
advice for decision-makers in matters of climate policy, WP6 involves a ground-breaking collaboration 
between climate science at UCL and theoretical computer science at PIK. The immediate role of D6.1 was 
to prepare the UCL personnel for the task of formally specifying sequential decision problems within the 
Botta et al. Framework ([1],[3]), but the course material is suitable to introduce a larger audience to 
verified (and thus accountable) decision making under uncertainty in the context of climate science. 
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Decision problems in climate research
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Decision problems in climate research

Objectives of this lecture

I Get acquainted with the general idea of using formal methods
for climate impact research

I Learn about basic questions concerning uncertainties in
sequential decision making

I Go through two basic examples of decision problems in
climate research and analyze their common features
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Lecture 1: Decision problems in climate research 
  



Decision problems in climate research →

Climate research and decision making

Decision problems in climate research → Climate research and decision making

I Climate research shall improve our understanding of the earth
system and climate but also . . .

I . . . inform rational, transparent, accountable and, above all,
good decisions!

I Best policies for a decision problem typically depend on the
uncertainties that affect that problem but . . .

I . . . in climate research, many unavoidable uncertainties cannot
be estimated through established theories or model
simulations!
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Decision problems in climate research →

Example 1: emission reduction policies

Decision problems in climate research → Example 1: emission reduction policies

I Global GHG emissions have to be reduced readily to avoid
possibly unmanageable impacts of climate change:

SPM

 Summary for Policymakers

15

as well as substantial risks and institutional and social constraints to deployment related to governance, ethics, and impacts 
on sustainable development. They also do not mitigate ocean acidification. (medium confidence) {4.3.8, Cross-Chapter 
Box 10 in Chapter 4}
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Emissions of non-CO2 forcers are also reduced 
or limited in pathways limiting global warming 
to 1.5°C with no or limited overshoot, but 
they do not reach zero globally. 

Non-CO2 emissions relative to 2010
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Global emissions pathway characteristics
General characteristics of the evolution of anthropogenic net emissions of CO2, and total emissions of 
methane, black carbon, and nitrous oxide in model pathways that limit global warming to 1.5°C with no or 
limited overshoot. Net emissions are defined as anthropogenic emissions reduced by anthropogenic 
removals. Reductions in net emissions can be achieved through di�erent portfolios of mitigation measures 
illustrated in Figure SPM.3b.
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Four illustrative model pathways

no or limited overshoot,

In pathways limiting global warming to 1.5°C 
with no or limited overshoot as well as in 
pathways with a higher overshoot, CO2 emissions 
are reduced to net zero globally around 2050.
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Figure SPM.3a | Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming 
to 1.5°C with no or limited (less than 0.1°C) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this 
Report. The panels on the right show non-CO2 emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming 
from sources distinct from those central to CO2 mitigation. Shaded areas in these panels show the 5–95% (light shading) and interquartile (dark shading) ranges 
of pathways limiting global warming to 1.5°C with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching 
global net zero CO2 emission levels, and a comparison with pathways limiting global warming to 2°C with at least 66% probability. Four illustrative model pathways 
are highlighted in the main panel and are labelled P1, P2, P3 and P4, corresponding to the LED, S1, S2, and S5 pathways assessed in Chapter 2. Descriptions and 
characteristics of these pathways are available in Figure SPM.3b. {2.1, 2.2, 2.3, Figure 2.5, Figure 2.10, Figure 2.11}

IPCC Special Report - Global Warming of 1.5 ◦C, Oct. 2018
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Decision problems in climate research → Example 1: emission reduction policies

I Too fast reductions may compromise the wealth of one or
more upcoming generations but ...

I ... they may promote a transition to societies that are more
wealthy, safe, fair and manageable.

I New technologies that significantly reduce the costs of fast
emission reductions may become available soon.

I Already taken decisions may not be implemented or they may
be implemented with delays.

Decision problems in climate research → Example 1: emission reduction policies

I The implication of these may is that results like this

are very useful to identify a corridor of viable options but also
raise a number of difficult questions:
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Decision problems in climate research → Example 1: emission reduction policies

I What are the risks associated with the upper (H) and lower
(L) boundaries of the emissions corridor? What their costs?

H

L

Decision problems in climate research → Example 1: emission reduction policies

I Assume that, between 2040 and 2050, new technologies
makes it possible to reduce GHG emissions at low costs:

H

L
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Decision problems in climate research → Example 1: emission reduction policies

I What are “optimal” emission paths under this scenario? What
can optimal possibly mean in this context?

H

L

Decision problems in climate research → Example 1: emission reduction policies

I Perhaps are H emissions until 2040 too dangerous? Or L
emissions after 2050 too expensive?

Too dangerous?

Too expensive?

H

L
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Decision problems in climate research →

Decision making under uncertainty: basic questions

Decision problems in climate research → Decision making under uncertainty: basic questions

I In presence of uncertainties, the notion of “optimal path of
decisions” becomes devoid of meaning!

I But the notion of optimal decision rule = optimal policy is
still meaningful and relevant!

I How do optimal policies look like and what is the impact of
uncertainties on optimal policies?

I How do optimal policies change if we account for the fact
that technological innovations could become available later or
earlier?

I Or that there is a non-zero probability of exceeding critical
thresholds even if we stay within the IPCC emission corridor?

I What if decisions are not implemented according to plan or it
they are delayed?

I Can we account for these uncertainties rigorously, at least for
idealized decision problems?
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Decision problems in climate research →

Example 2: a generation dilemma (Heitzig et al. 2018)

Decision problems in climate research → Example 2: a generation dilemma (Heitzig et al. 2018)

I The world can be in one of four states: GU, GS, B and BT.

I B is a bad state, one in which resources are depleted and the
wealth of the societies is low.

I GS is a good, safe state. In GS, plenty of resources are
available, societies are wealthy and there is no risk for the
world to turn into B, GU or BT.

I GU is a good but unsafe state. In GU, plenty of resources are
available, societies are wealthy but there is a significant risk
for the world to turn into B.

I BT is a bad but temporary state. In BT, societies are poor
but it is known for certain that the next state will be GS.
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Decision problems in climate research → Example 2: a generation dilemma (Heitzig et al. 2018)

I A generation in B, BT or GS has no options: the next states
will be B, GS and GS, respectively.

I A generation in GU also has two options: a and b. If it picks
a, the next generation will possibly be in GU again. But it can
also end up in B. If it picks b, the next generation will
certainly be in BT.

GU BT

B GS

a

a

b

I What should a generation in GU do? a or b?

Decision problems in climate research →

Examples 1 and 2: common traits
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Decision problems in climate research → Examples 1 and 2: common traits

I Both decision problems have the form of a dilemma.

I In both cases, the consequences of decisions are uncertain.

I Decisions are taken sequentially as time unfolds.

I Decisions might be implemented with delays or not
implemented at all.

I Can we exploit these similarities? Can we develop a method
for specifying and solving these and similar decisions problems
rigorously? What does this mean in the specific examples?

Decision problems in climate research →

Example 1 revisited: a tentative specification
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Decision problems in climate research → Example 1 revisited: a tentative specification

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
L emissions or H emissions of a “safe” emission corridor.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, L emissions increase cumulated emissions less
than H emissions.

Decision problems in climate research → Example 1 revisited: a tentative specification

I At each step, the decision maker has to choose between L and
H emissions on the basis of four data:

I The current amount of cumulated emissions.

I The current emission level: L or H.

I The availability of technologies for reducing emissions.

I A state of the world which can be either good or bad .
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Decision problems in climate research → Example 1 revisited: a tentative specification

I At the first decision step, the decision maker observes
(relatively) low cumulated emissions, H current emissions,
unavailable technologies and a good world.

I In this state, the probability that the world turns bad is
(relatively) low.

I But if the cumulated emissions increase beyond a critical
threshold, the probability that the world becomes bad steeply
increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that new technologies become
available is low at the first decision steps. It increases steeply
after 2040 or, equivalently, after a critical number of steps.

I Once available, technologies stay available for ever.

Decision problems in climate research → Example 1 revisited: a tentative specification

I Being in a bad world yields less benefits than being in a good
world.

I L current emissions yield less benefits (more costs, less
growth) than H current emissions.

I Implementing low emissions when technologies are unavailable
costs more than implementing emissions when technologies
are available.

I The decision maker aim at maximising a sum of the benefits
over all decision steps.
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Decision problems in climate research →

More details does not mean a better understanding!

Decision problems in climate research → More details does not mean a better understanding!

I We have introduced more details but we are still very far from
a complete specification and understanding of the decision
problem!

I Even if we assume that all the uncertainties that affect the
problem have been specified, advising the decision maker
requires answering a number of crucial questions:

I What kind of solutions or advice can we offer to the decision
maker?

I Can we compute these solutions or advice in a rigorous way?
What do we need to do so?

I Can we guarantee that these solutions or advice are correct?
What does this mean?
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Decision problems in climate research → More details does not mean a better understanding!

I We answer these questions in three steps:

I Abstract away the details of specific decision problems.

I Formulate a whole class of decision problems rigorously.

I Derive generic, accountable = correct by construction solution
methods for these problems.

Decision problems in climate research →

Abstracting away the details: an informal view
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Decision problems in climate research → Abstracting away the details: an informal view

There are n + 1 decision steps to go . . .

n+1 steps left

n steps left

Decision problems in climate research → Abstracting away the details: an informal view

. . . here is the current state,

n+1 steps left

n steps left
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Decision problems in climate research → Abstracting away the details: an informal view

. . . here are your options.

n+1 steps left

n steps left

Decision problems in climate research → Abstracting away the details: an informal view

Pick one!

n+1 steps left

n steps left
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Decision problems in climate research → Abstracting away the details: an informal view

Move to a new state and . . .

n+1 steps left

n steps left

Decision problems in climate research → Abstracting away the details: an informal view

. . . collect rewards and face the next decision step!

n+1 steps left

n steps left
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Decision problems in climate research → Abstracting away the details: an informal view

What if there are more than one next possible states?

n+1 steps left

n steps left

Decision problems in climate research →

Wrap-up
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Decision problems in climate research → Wrap-up

I We have seen two examples of simple but non-trivial decision
problems in climate research.

I The problems have been described through informal
narratives.

I We have outlined some common features and patterns but . . .

I . . . we are far from understanding the problems, let apart from
being able to solve them!

I We need more formal problem descriptions and general,
accountable methods for solving the problems.

Decision problems in climate research →

Coming up
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Decision problems in climate research → Coming up

I In the next lecture we look at mathematical specifications.

I We learn (what it means) to specify problems through simple
examples.

I We also get some elementary ideas about proof methods and
a little bit of notation.
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Objectives of this lecture

• Look at semi-formal mathematical problem specification

• Learn to carry out simple specification tasks through exercises

• Gain some elementary knowledge of structural induction and equational reasoning as proof
method

2.1 Equations, problems and solutions

In mathematics we say that

x = 1

x = −1

are solutions of

x 2 = 1

What does this precisely mean? x = 1, x = −1 and x 2 = 1 are all equations. But they are in
certain relations to each other. We have

x = 1⇒ x 2 = 1

and also

x = −1⇒ x 2 = 1

These implications are what justifies saying that x = 1 and x = −1 solve x 2 = 1.

The equation x = 1 (x = −1) is different from x 2 = 1 also from another point of view: the first
equation determines the value of x directly, without computations.

The equation x 2 = 1 specifies a problem: that of finding values whose square is one. We can
specify the problem a little bit more explicitly:

Find x ∈ R s.t. x 2 = 1

This is a first example of a mathematical specification. As we have seen, the problem has two
solutions. We can go one step further and specify the problem of finding the square root of an
arbitrary number:
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Given y ∈ R, find x ∈ R s.t. x 2 = y

This problem is not solvable. For instance, it is not solvable for y = −1. We say that the
specification is infeasible. The problem here is that the requirements on y are too weak. We can
obtain a feasible specification if we require y to be non-negative:

Given y ∈ R, 0 6 y , find x ∈ R s.t. x 2 = y

The problem can now be solved, at least in principle. In practice, computing square roots of
arbitrary numbers can be very difficult if we pretend to fulfill x 2 = y exactly. When doing real
computations, we typically accept that this equation will only be satisfied up to a certain tolerance.
We do not want to deal with these kind of problems here.

2.2 Functions as solutions

The last specification does not say anything about which root shall be found for a given y . For
instance, if we just want to look at four input values, say y takes the values [1, 0, 9, 4], then all of

[−1, 0, 3, 2], [1, 0,−3,−2], [1, 0, 3, 2], [−1, 0,−3,−2]

are acceptable results according to that specification. Sometimes we want to be more precise and
require the solution of a problem to be a function. In mathematics, we specify a function by giving
its signature and its definition. For instance

double : N → N
double n = 2 ∗ n

We say that double is of type N→ N or that double maps natural numbers to natural numbers.
For f : A→ B , A and B are called the domain and the codomain of f .

Notation: we denote function application f (x ) by juxtaposition f x !

We can specify the problem of finding a function that computes a square root of arbitary non-
negative numbers as e.g.

Find
√

: R → R s.t. ∀y ∈ R, 0 6 y ⇒ (
√

y)2 = y

or equivalently as

Find
√

: R≥0 → R s.t. ∀y ∈ R≥0, (
√

y) ∗ (
√

y) = y

This problem has two solutions: one function that always computes the negative root and one
that always computes the positive square root.
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Exercise 2.1. Specify the problem of finding a function that computes both square roots.

Remark: In this subsection, we followed Morgan’s introduction to programming from specifica-
tion [3]. There you can also find more examples and exercises.

2.3 Domain-specific notions

Mathematical specifications can also be applied to clarify notions that are specific to a given
application domain. For example:

• What does it mean for f : X → Y to be a function?

• What does it mean for a strategy to be dominant?

• What does it mean for a climate state to be avoidable?

Often, giving precise answers is not easy. Sometimes, it turns out that we want a whole family
of notions, not just one notion. The context of the emission problem discussed in lecture 1, for
instance, is

• Emission reductions imply different costs and benefits for different countries.

• The highest global benefits are obtained if most countries reduce emissions by certain (op-
timal, fair, ...) country-specific amounts.

• In this situation most countries have a free-ride opportunity!

The most paradigmatic example of this situation is perhaps the two-players prisoner’s dilemma

D C
D (1,1) (3,0)
C (0,3) (2,2)

Table 1: Payoff matrix

Which property makes (D ,D) stable and yet undesirable strategies?

Let S = {D ,C } and p1, p2 : S × S → R payoff functions. A strategy profile
(x , y) ∈ S × S is a Nash equilibrium iff ∀x ′, y ′ ∈ S , p1 (x ′, y) 6 p1 (x , y) and
p2 (x , y ′) 6 p2 (x , y).
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Remark: Note that the definition of Nash equilibrium depends on a binary operator 6. (Which
properties should this binary operator reasonably have?)

Exercise 2.2. Modify the payoffs of (C ,C ) in Table 1 for (C ,C ) to become a Nash equilibrium.

Exercise 2.3. Generalize the notion of Nash equilibrium to an arbitrary number of players.

Let X denote a set of states that a decision maker can observe. For instance, X could be a tuple
of numbers that represent aggregated measures or indicators of wealth, inequality, environmental
stress, etc.

Let Y denote the options available to the decision maker. For simplicity, we assume that she has
the same options in all states x ∈ X .

Functions that associate an option to every state are called policies.

Let val : X → Y → R be a value function: val x y denotes the value of taking decision y in
state x .

A policy p : X → Y is called optimal w.r.t to val if it yields controls that are better or as good
as any other control for all states.

Exercise 2.4. Give a mathematical specification of the notion of optimality for policies.

If Y is finite and non-empty, one can implement

max : (Y → R) → R
argmax : (Y → R) → Y

that fulfill

∀f : Y → R, ∀y ∈ Y , f y 6 max f

∀f : Y → R, f (argmax f ) = max f

Exercise 2.5. Find a function p : (X → Y → R) → (X → Y ) that such that p val is an
optimal policy w.r.t to val for arbitrary val . Prove that p val is indeed optimal.
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Exercise 2.6. Let Fin n be the set of natural numbers smaller than n:

Fin 0 = { }
Fin 1 = {0}
Fin 2 = {0, 1}
. . .

Fin n = {0 ... n − 1}

Give a mathematical specification of the notion of finiteness for a set X . Begin with

A set X is finite iff . . .

Exercise 2.7. Apply the specification of finiteness from Exercise 2.6 to show that the two elements
set X = {Up,Down } is finite.

2.4 Mathematical specifications and modelling

In agent-based models of green growth (opinion formation, consume, etc.) it is common to equip
a set of agents with certain features. Thus, for instance, agents can be employed or unemployed

status : Agent → {Employed ,Unemployed }

. . . have certain incomes and

income : Agent → R≥0

. . . consume behaviors

buy : Agent → Prob {GreenCar ,BrownCar ,NoCar }

Here Prob X represents finite probability distributions over an arbitrary set X . Let Event X =
X → Bool and

prob : Prob X → Event X → [0, 1]

be the generic function that computes the probability of an event e : Event X according to a
given probability distribution. Thus, for d ∈ Prob X and e ∈ Event X
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prob d e

represents the probability of e according to d . We want to implement an agent-based model in
which agents with higher incomes are more likely to buy green cars than agents with lower incomes.

We also would like to specify that unemployed agents are less likely to buy a brown car than
employed agents.

Exercise 2.8. Express these model requirements as mathematical specifications using the model-
specific functions status, income, buy and the generic function prob.

2.5 Equational reasoning

Equational Reasoning is the proof method encouraged by the “Algebra of Programming” commu-
nity [1] ( see L3E2) for reasoning about systematic, correctness preserving program transforma-
tions. Originally this form of calculation with programs was done on a semi-formal meta-level (by
semi-formal we mean: on paper, not inside an implemented type theory/proof assistant).

It comes with a distinctive style of presenting proofs with justification of every transformation
step (just as one would do in school when solving equations).

A very important ingredient of this algebraic approach to program correctness is structural in-
duction. Here, we will look at a simple example using this technique, presented in equational
reasoning style.

We will prove a property of exponentiation.

The exponentiation with natural numbers fulfills the properties

(1) ∀x ∈ R, x 0 = 1

(2) ∀x ∈ R, m ∈ N, x 1+m = x ∗ xm

From (1), (2) and the algebraic properties of ∗ and + we can show that

∀x ∈ R, m,n ∈ N, xm+n = xm ∗ xn

The proof is by induction on m. We first show the base case (m = 0)

∀x ∈ R, n ∈ N, x 0+n = x 0 ∗ xn

Then we prove the induction step (m ⇒ 1 + m)

∀x ∈ R, n ∈ N, xm+n = xm ∗ xn

⇒
∀x ∈ R, n ∈ N, x (1+m)+n = x 1+m ∗ xn
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The proofs are obtained by equational reasoning. Let’s start with the “difficult” (induction step)
case:

x (1+m)+n

= { Associativity of + }
x 1+(m+n)

= { Property (2) }
x ∗ xm+n

= { Induction hypothesis }
x ∗ (xm ∗ xn)

= { Associativity of ∗ }
(x ∗ xm) ∗ xn

= { Property (2) }
x 1+m ∗ xn

Exercise 2.9. Prove the base case.

2.6 Coming up

The next lecture is an introduction to functional programming.

We use Idris [2] as a specification and programming language.
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Solutions

Exercise 2.1:

The specification of a function allsqrts that returns the set of all possible square roots of a positive
real number:

Find allsqrts : R → P R s.t. ∀y ∈ R≥0, ∀x ∈ R, x 2 = y ⇔ x ∈ allsqrts (y)

Exercise 2.2:

D C
D (1,1) (3,0)
C (0,3) (3,3)

Exercise 2.3:

Let n ∈ N be the number of players and Si, i ∈ {1, ...,n } the strategy set of the i -th player. Let
pi : S1 × S2 × ... × Sn→ R, i ∈ {1, ...,n } the payoff function of the i -th player. A strategy
profile (x1, ..., x n) ∈ S1 × ... × Sn is a Nash equilibrium iff ∀i ∈ {1, ...,n } and ∀x′i ∈ Si,
pi (x1, ..., xi−1, x

′
i, xi+1, ...x n) 6 pi (x1, ..., xi−1, xi, xi+1, ...x n).

Exercise 2.4:

p : X → Y optimal iff ∀x : X , ∀y : Y , val x y 6 val x (p x )

Exercise 2.5:

With

p : (X → Y → R) → (X → Y )
p val x = argmax (val x )

and for an arbitrary x : X , one has

∀ y ∈ Y , (val x ) y 6 max (val x )

because of (a) with f = val x . Because of (b) and, again, for f = val x , one has

max (val x ) = (val x ) (argmax (val x ))

Thus, we conclude
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∀ x : X , ∀ y ∈ Y , (val x ) y 6 (val x ) (argmax (val x ))

But argmax (val x ) = p val x by definition of p and thus we have

∀ x : X , ∀ y ∈ Y , val x y 6 val x (p val x )

that is, p val is optimal w.r.t. val as required.

Exercise 2.6:

A set X is finite iff . . .

. . . ∃ n ∈ N,∃ f : X → Fin n, isIso f

where for a function f : A → B

isIso f ⇔ ∃ g : B → A, f ◦ g = id ∧ g ◦ f = id

Exercise 2.7:

In order to show finite {Up,Down }, we first have to choose a natural number:

Choose n := 2

then choose a function f : {Up,Down } → Fin 2:

Choose

f : {Up,Down } → Fin 2, where

f Up = 0 f Down = 1

and show that f is an isomorphism according to definition given above. I.e. we have to choose a
function g : Fin 2 → {Up,Dpwn } and show that f and g are mutual inverses.

Choose g : Fin 2 → {Up,Down }, where

g 0 = Up g 1 = Down

Now show (pointwise) that

f ◦ g = id by

∀x ∈ Fin 2, f (g x ) = x
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Case x = 0:

f (g 0)) = f Up = 0 by definition of f and g

Case x = 1:

f (g 1) = f Down = 1 by definition of f and g

and

g ◦ f = id by

∀x ∈ {Up,Down }, g (f x ) = x

Case x = Up:

g (f Up)) = g 0 = Up by definition of f and g

Case x = Down:

g (f Down) = g 1 = Down by definition of f and g

Exercise 2.8:

Let eGreen : {GreenCar ,BrownCar ,NoCar } → Bool be an event such that

eGreen GreenCar = true

and

eBrown : {GreenCar ,BrownCar ,NoCar } → Bool be an event such that

eBrown BrownCar = true

Then we require that the following implications hold:

∀a1, a2 ∈ Agent ,

income (a1) > income (a2)

⇒ prob (buy (a1)) eGreen > prob (buy (a2)) eGreen

∀a1, a2 ∈ Agent ,

status (a1) = Unemployed ∧ status (a2) = Employed

⇒ prob (buy (a1)) eBrown < prob (buy (a2)) eBrown

TiPES Deliverable D6.1 

 

 

 Page 
35 

 
  

  



Exercise 2.9:

x 0+n

= { Zero left neutral element of + }
xn

= { One left neutral element of ∗ }
1 ∗ xn

= { Property (1) }
x 0 ∗ xn
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Objectives of this lecture

• Get acquainted with the basic usage of functions, function composition, and higher order
functions in functional programming

• Learn about primitive and inductive data types in Idris

• Get to know two forms of polymorphism and learn how one of them is related to generic
programming

• Learn about the List and Vector data types

3.1 Imperative and functional languages

Traditionally, computer scientists use(d) to distinguish a number of different programming paradigms
(e.g. precedural, object-oriented, functional or declarative). As of today these distinctions have
become somewhat blurred, with modern programming languages often integrating features from
different paradigms.

However, it still seems valid to contrast against each other an imperative and a functional way of
thinking about the programs.

Climate scientists and modelers are often well acquainted with imperative programming lan-
guages/style of programming.

Very roughly, imperative programming is a method of specifying what a computing machine shall
do in terms of instructions and execution procedures.

In functional programming, one specifies what a computing machine shall do in terms of functions
and their application and composition, with an emphasis on inductive definitions and algebraic
structure.

In this lecture we are going to learn some basics of FP using Idris [2] as a language.

Idris is a strongly typed functional programming language. A prototype implementation appeared
in 2008, the current implementation began in 2011. Thus, Idris is a relatively young language.
However, its roots are much older and in fact reach back to the quest for a logical foundation of
mathematics in the beginning of the 20th century. ( L4E1 for historical background)

3.2 Expressions and their types

At the core of all programming languages is a sublanguage of expressions like

1 + 2

"Hello"

[1, 7, 3, 8]
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λx ⇒ 2 ∗ x + 1

In functional languages this core is expressive enough to implement almost all programs you may
want to write.

In strongly typed languages like Idris each valid expression has a type. The judgment e : t states
that the expression e has type t .

1 + 2 : N
"Hello" : String

[1, 7, 3, 8] : List N
λx ⇒ 2 ∗ x : Integer → Integer

Most of the power of Idris comes from its type-checker which can check these judgments for very
complex expressions e and types t .

Remark: Note that the above “code” in the pdf-document is “prettified” by preprocessing and
slightly differs from the actual Idris code. E.g.

\x => t

is printed as

λ x ⇒ t

instead.

3.3 Function application and currying

In Idris (and several other functional languages like Haskell and Agda) the notation for function
application is juxtaposition. Thus,

f x

instead of

f (x )

denotes the application of the function f to the argument x . Apart from this notational difference,
parantheses in Idris play the same role as in mathematics: enclosing sub-expressions to resolve
operator precedence.

A function of n > 1 arguments in mathematics is usually considered as a function taking one
n−tuple as argument. In Idris, we often use nested function application

(g x ) y
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instead of

g (x , y)

That is, functions “of n arguments” take one argument at a time, resulting in a function “of n− 1
arguments” which in turn is applied to the next input. (Both ways of looking at functions have
their merit, though, and we will come back to the relation between the two.)

As an aside, (g x ) y can also be written g x y because function application is left-associative.

Exercise 3.1. What is the type of g?

Here a, b and c are arbitrary types. Examples of functions that take two arguments are infix
operators like (+). Infix operators can be written between their first and second arguments:

(+) 1 2 = 1 + 2

3.4 Function composition and higher order functions

Function composition is another example of an infix operator. In Idris (but also in Haskell, Agda
and plain mathematics), function composition is denoted by a dot:

(◦) : (b → c) → (a → b) → a → c
(◦) g f x = g (f x )

Function composition is an example of a higher order function. It takes two functions and returns
their composite.

Higher order functions take one or more functions as arguments and/or return a function. Every
function of two or more arguments can be partially applied and is thus a higher order function.
Thus, if

g : a → (b → c) = a → b → c

then

g x : b → c

We can easily turn g into an equivalent function g ′ that takes as arguments pairs

g ′ : (a, b) → c
g ′ (x , y) = g x y

In Idris (an most functional languages) two high order functions convert between the two forms:

uncurry : (a → b → c) → (a, b) → c

curry : ((a, b) → c) → a → b → c
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Remark: Unfortunately, in Idris (as in Haskell), the product type constructor and the product
term constructor are both denoted by (·, ·). So in the above, (a, b) is the product type which could
be thought of as cartesian product a × b, while (x , y) is a pair of values, where x is of type a and
y of type b.

Exercise 3.2. Define uncurry and curry .

Exercise 3.3. Show with equational reasoning (as introduced in lecture 2) that uncurry ◦curry =
curry ◦ uncurry = id .

If g ′ : (a, b) → c, curry g ′ : a → b → c is called the curried form of g ′. Similarly
uncurry g : (a, b) → c is called the uncurried form of g : a → b → c . 1

3.5 Polymorphism

Some functions can be used for more than one type of data – they are polymorphic. However, in
Idris and similar languages, one distinguishes between two conceptually different forms of poly-
morphism.

3.5.1 Parametric polymorphism and generic programs

The notion of parametric polymorphims relates to functions whose defiition does not depend on
the structure of the underlying datatypes. (In category theoretical terms, they can be seen as
natural transformations [6],  see LE32)

Function composition, curry and uncurry are examples of this kind of polymorphic function. The
symbols a, b and c in

(◦) : (b → c) → (a → b) → a → c

denote implicit type variables. The judgment is in fact an abbreviation of

(◦) : {a, b, c : Type } → (b → c) → (a → b) → a → c

which is itself an abbreviation of

(◦) : {a : Type } → {b : Type } → {c : Type } →
(b → c) → (a → b) → a → c

1The names stem from Haskell Brooks Curry (1900-1982) but the idea that every function of more than one
variable can be understood as a (higher order) of only one variable was apparently first used by Frege [5] and
studied further by Schönfinkel [4]. But Curry’s combinatory logic [3] ws more influential with respect to functional
programming which might explain why Reynold’s chose this name in his influential 1972 paper [1] which then was
adopted by the community.
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We say that (◦) is a generic program. It computes the composition f ◦ g of any two functions f
and g as long as the domain of f coincides with the codomain of g .

A simpler example of polymorphic functions are the projection functions for pairs:

fst : (s, t) → s -- Remark: s × t → s
fst (x , y) = x

snd : (s, t) → t
snd (x , y) = y

Here too, s and t are implicit type variables and the above are abbreviations for

fst : {s : Type } → {t : Type } → (s, t) → s
fst {s } {t } (x , y) = x

and similarly for snd . In Idris we can afford to write abbreviated forms because the type checker
can often infer the type of implicit arguments. When needed, such types can be supplied within
curly braces.

Polymorphic functions are central to generic programming. Generic programming is a method-
ology that aims at improving sofware reuse and correctness while at the same time reducing
documentation efforts.

IdrisLibs [?] provides, among others, generic methods for specifying and solving sequential decision
problems.

3.5.2 Aside: Constrained polymorphism and type classes

There often is another form of polymorphism available in modern programming languages which
concerns the overloading of operator symbols. In the context of functional programming, this is
often referred to as ad-hoc polymorphism and provided by the so-called type classes. In Idris these
go by the name of interfaces. As we do not need them for now, we just mention this concept for
completeness and in contrast to the concept of parametric polymorphism.

3.6 Data types

Beside providing methods to define, compose and apply functions, most functional programming
languages support the definition of new data types.

We can introduce new types that extend the language via inductive definitions like

data N : Type where
Z : N
S : N → N
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which defines the type of natural numbers in Idris. The definition coincides with the usual inductive
definition of N: It states that

* N is a type.

* Z (zero) is a value of type N.

* ∀ n : N, S n (the successor of n) is a value of type N.

Z and S are called the data constructors of N. Data constructors are disjoint : no natural number
can be both zero and a successor. Moreover every natural number is either zero or the successor
of another natural number. These properties make it possible to define total functions via pattern
matching :

plus : N → N → N
plus Z n = n
plus (S m) n = S (plus m n)

(This amounts to specifying functions by recursion equations which are accepted by the type
checker, if it can guarantee termination of the recursive calls because of a syntactic monotonicity
criterion.)

3.7 Lists

data List : Type → Type where
Nil : List a
(::) : a → List a → List a

* ∀ a : Type, List a is a type.

* ∀ a : Type, Nil (the empty list) is a value of type List a.

* ∀ a : Type, x : a, xs : List a, x :: xs is a value of type List a.

Thus, for instance

xs : List N
xs = Nil

ys : List N
ys = Z :: ((S Z ) :: Nil)

Notation: we usually write [3, 0, 1] instead of (S (S (S Z ))) :: (Z :: ((S Z ) :: Nil)).

In Idris, lists come with a number of useful predefined functions and abbreviations:

3.7.1 List comprehension

Idris > [0 . . 3]
[0, 1, 2, 3] : List Integer
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Idris > [5 . . 2]
[5, 4, 3, 2] : List Integer

Idris > [2 ∗ n | n ← [1 . . 9]]
[2, 4, 6, 8, 10, 12, 14, 16, 18] : List Integer

Idris >map (2∗) [1 . . 9]
[2, 4, 6, 8, 10, 12, 14, 16, 18] : List Integer

Exercise 3.4. What is the type of map?

3.7.2 Basic operations

length : List a → N

Exercise 3.5. Implement length.

(++) : List a → List a → List a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: (xs ++ ys)

Exercise 3.6. What is the result of [3, 1]++[2, 0, 1]? Give a computational proof of your conjecture
(i.e. by step-wise evaluation according to the definition of (++)).

concat : List (List a) → List a
concat Nil = Nil
concat (xs :: xss) = xs ++ concat xss

map : (a → b) → List a → List b
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
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Exercise 3.7. Show that map id = id .

Exercise 3.8. Show that map (f ◦ g) = map f ◦map g .

3.8 Vectors

In many cases, one would like to operate with lists of specific lengths.

For instance, require a function

zip : List a → List b → List (a, b)

to only take arguments of the same length. This can be done by encoding the length of a list in
its type:

data Vect : N → Type → Type where
Nil : Vect Z a
(::) : (x : a) → (xs : Vect n a) → Vect (S n) a

This declaration can be seen as an infinite family of simpler datatype declarations where Vect0 A
only contains 0-length vectors, etc.

data Vect0 : Type → Type where
Nil0 : Vect0 a

data Vect1 : Type → Type where
Cons1 : (x : a) → (xs : Vect0 a) → Vect1 a

data Vect2 : Type → Type where
Cons2 : (x : a) → (xs : Vect1 a) → Vect2 a

In this view it is easy to see that, even though the family as a whole (Vect) has two constructors,
each family member (Vect0 , Vect1 , etc.) has exactly one.

A simple example of a vector based function is head which extracts the first element of a vector:

head : Vect (S n) a → a
head (x :: xs) = x

Note that head is only defined for non-empty vectors: vectors of length S n for some n.

Exercise 3.9. Implement a tail function that computes the tail of a non-empty vector.
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Exercise 3.10. It is easy to see that ∀n : N, a : Type, v : Vect (S n) a, head v :: tail v = v.
Give a formal proof (like in section 2.5). What happens in the case v = Nil?

3.9 Coming up

The next lecture will be an introduction to dependently-typed programming and theorem proving.
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Solutions

Exercise 3.1:

g : a → (b → c) = a → b → c

Exercise 3.2:

uncurry g (x , y) = g x y

curry g ′ x y = g ′ (x , y)

Exercise 3.3:

(uncurry ◦ curry) g ′ (x , y)

= { Def. composition }
uncurry (curry g ′) (x , y)

= { Def. uncurry }
(curry g ′) x y

= { Def. curry }
g ′ (x , y)

(curry ◦ uncurry) g x y

= { Def. composition }
curry (uncurry g) x y

= { Def. curry }
(uncurry g) (x , y)

= { Def. uncurry }
g x y

Exercise 3.4:

map : (a → b) → List a → List b

Exercise 3.5:

length Nil = Z
length (x :: xs) = S (length xs)
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Exercise 3.6:

[3, 1] ++ [2, 0, 1] = [3, 1, 2, 0, 1]

[3, 1] ++ [2, 0, 1]

= { Syntax }
(3 :: (1 :: Nil)) ++ (2 :: (0 :: (1 :: Nil)))

= { Def. (++), case 2 }
3 :: ((1 :: Nil) ++ (2 :: (0 :: (1 :: Nil))))

= { Def. (++), case 2 }
3 :: (1 :: (Nil ++ (2 :: (0 :: (1 :: Nil)))))

= { Def. (++), case 1 }
3 :: (1 :: (2 :: (0 :: (1 :: Nil))))

= { Syntax }
[3, 1, 2, 0, 1]

Exercise 3.7:

The Nil case:

map id Nil

= { Def. of map, case 1 }
Nil

= { Def. of id on lists }
id Nil

The (::) case:

map id (x :: xs)

= { Def. of map, case 2 }
id x :: map id xs

= { Def. of id on list elements }
x :: map id xs

= { induction hypothesis }
x :: xs

= { Def. of id on lists }
id (x :: xs)
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Exercise 3.8:

The Nil case:

map (f ◦ g) Nil

= { Def. of map, case 1 }
Nil

= { Def. of map, case 1, reverse }
map f Nil

= { Def. of map, case 1, reverse, replace }
map f (map g Nil)

= { Def. composition }
(map f ◦map g) Nil

The (::) case:

map (f ◦ g) (x :: xs)

= { Def. of map, case 2 }
(f ◦ g) x :: map (f ◦ g) xs

= { Def. of ◦ }
f (g x ) :: map (f ◦ g) xs

= { induction hypothesis }
f (g x ) :: (map f ◦map g) xs

= { Def. of ◦ }
f (g x ) :: map f (map g xs)

= { Def. of map, case 2 }
map f (g x :: map g xs)

= { Def. of map, case 2 }
map f (map g (x :: xs))

= { Def. of ◦ }
(map f ◦map g) (x :: xs)

Exercise 3.9:

tail : Vect (S n) a → Vect n a
tail (x :: xs) = xs

Exercise 3.10:

In an formal-logic proof, we would need to treat case v = Nil which leads to a contradiction,
since Nil is of type Vect Z a 6= Vect S n a. If this is not necessary in Idris, then because the
type-checker is able to treat such impossible cases for us.
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So we just have to look at the case vs = v :: vs ′:

head (v :: vs ′) :: tail (v :: vs ′)

= { Def. of head }
v :: tail (v :: vs ′)

= { Def. of tail }
v :: vs ′

= { Hypothesis vs = v :: vs ′ }
vs

In Idris the following suffices, though (the above is just the work the type-checker is doing in the
background and the programmer is doing in her head...):

headTailId : (n : N) → (a : Type) → (vs : Vect (S n) a)

→ head vs :: tail vs = vs

headTailId n a (v :: vs ′) = Refl
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Objectives of this lecture

• Get acquainted with dependent types

• Learn how to formulate mathematical specifications using dependent types and do first proofs
in Idris

• Deepen theoretical background about correspondence between logic and type theory, the
importance of totality and termination, and the issue of extensional equality of functions.

4.1 Dependent types

In a nutshell, dependent types are types that depend on values. We have already seen examples
of dependent types in lecture 3. For instance, both the type of the argument of

tail : Vect (S n) a → Vect n a

and the type of its result depend on the values n : N and a : Type: the type Vect is a dependent
type.

Notation: Remember that the above is in fact an abbreviation for

tail : {n : N} → {a : Type } → Vect (S n) a → Vect n a

(It is save to think about this as a logical statement ∀n : N,∀a : Type,Vect (S n) a⇒Vect n a.)

Other examples of dependently typed functions from lecture 3 are (++), concat and map. We have
also seen dependently typed data constructors.

4.2 Equality types

Important and natural examples of dependent types are equality types.

Idris has a built-in type for propositional equality.

But let us look at boolean equality tests first.

In Idris, many predefined types come equipped with equality tests:

Idris > 2 + 1 3
True : Bool

Idris > [1, 2, 3] [2, 1, 3]
False : Bool

Idris > True False
False : Bool
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The tests are all called ( ) and return Boolean values. Not all Idris types can be test compared
for equality.

Exercise 4.1. Give an example of a type whose values cannot be compared for equality.

For all predefined types that can be compared for equality, ( ) is defined as one would expect.
But nothing would prevent one to define an equality test for Booleans like for instance

( ) : Bool → Bool → Bool
( ) b1 b2 = False

This would yield

Idris > True True
False : Bool

Equality tests can only be evaluated at run time and their results may or may not reflect the
equality (or inequality) of their arguments.

But Idris also supports logical reasoning about the equality or the inequality of expressions at type
check time. This is the role of the built-in propositional equality type briefly mentioned above.
Type checking is done before a program is actually compiled and, thus, well before the program
can be executed.

For instance

p : 2 + 1 = 3

is a legal Idris declaration. It represents a claim that the expression 2+1 is equal to the expression
3. A proof of such claim is just an implementation of p:

p = Refl

The claim that an expression x of type a is equal to an expression y of type b represented by the
type (x = y).

The infix operator (=) used here has type a → b → Type. For every x : a, and y : b we
have a type (x = y). This type depends on the values x and y . Thus, it is a dependent type.
Conceptually, it is defined as:

data (=) : a → b → Type where

Refl : x = x

where Refl stands for “reflexivity”. For most (x = y) types there are no values: they are empty
types. But a few have one value written Refl : (a = a).
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Refl can be used to constuct a value of type (x = y) iff x and y can be reduced to the same
expression. Thus, for instance, the claim

q : 2 + 1 = 0

can be formulated but it cannot be implemented. The only way of implementing a proof would
be by

q = Refl

and this triggers a type check error. The program cannot be compiled.

4.3 Negation, logical impossibility

While Idris does not allow to implement a proof q that 2 + 1 equals 0, it makes it easy to show
that such a q is an absurdity:

notq : Not (2 + 1 = 0)
notq Refl impossible

Here Not is the function

Not : Type → Type
Not a = a → Void

and Void is a type with no constructors:

data Void : Type where

Thus, a value of type Void represents a logical impossibility. Idris provides a built-in rule for ”ex
falso sequitur quodlibet” called void :

void : Void → a

Thus, if we have a value of type T and one of type Not T , we can prove everything:

T : Type
t : T
nt : Not T

oneEqZero : 1 = 0
oneEqZero = void (nt t)

Back to the implementation of notq . There, impossible is a keyword.

It recognizes an impossible pattern matching (remember that 2 + 1 is just an abbreviation for
plus (S (S Z )) (S Z ) which, in turn, reduces to S (S (S Z )) and that constructors are disjoint)
and yields a contradiction – that is, a value of type Void .
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4.4 Properties, propositions and types

Dependent types can also be used to encode properties and propositions. For instance, with

Domain : (a → b) → Type
Domain {a } f = a

we can express what it means for an arbitrary function f : a → b to be injective

Injective : (a → b) → Type
Injective f = (x , y : Domain f ) → f x = f y → x = y

This is almost a word-by-word translation of the corresponding mathematical specification:

f : a → b injective iff ∀x , y ∈ Dom f , f x = f y ⇒ x = y .

Exercise 4.2. Recall the notion of optimality of policies from lecture 2:

p : X → Y optimal iff ∀x : X , ∀y : Y , val x y 6 val x (p x )

Here X and Y were sets (states, options) and val : X → Y → R denoted a value function.
Take

X : Type -- the type of states
Y : Type -- the type of options
val : X → Y → R -- a value function

and implement a dependently typed specification of the notion of optimality for policies through
an Idris function of type (X → Y ) → Type.

4.5 Existential types

In many mathematical specifications we find fragments of the form ∃x ∈ X s.t. ... For instance

Let n ∈ N. d ∈ N is a divisor of n iff ∃q ∈ N, s.t. d ∗ q = n.

Because in DTLs we can encode propositions as types, we can define a data type that represents
the statement ”there exists an x such that prop x holds”.

data Exists : (a : Type) → (pro : a → Type) → Type where
Evidence : (wit : a) → (prf : pro wit) → Exists a pro

Now we can specify what it means for a natural number to be a divisor:
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Divisor : (d : N) → (n : N) → Type
Divisor d n = Exists N (λq ⇒ d ∗ q = n)

and give a proof that 3 is a divisor of 6

threeDivisorSix : Divisor 3 6
threeDivisorSix = Evidence 2 Refl

Exercise 4.3. In Evidence 2 Refl , Refl asserts the equality of two expressions. What are the
expressions on the LHS and on the RHS of this equality? Proceed by unfolding the definitions in
Divisor 3 6 and Evidence 2 refl .

Remark: The notion of existence encoded by Exists is constructive (evidential). A value of type
Exists a pro can only be constructed by giving a concrete witness wit : a and a proof prf : pro wit
that pro holds at wit .

Remark: The Idris definition of Exists is slightly different: the first argument of Exists is implicit.

In addition to the logical reading one can also see values of type Exists a pro as dependent pairs
where Evidence is the pair constructor and the two projections are getWitness and getProof :

getWitness : Exists a pro → a
getWitness (Evidence wit prf ) = wit

getProof : (evi : Exists a pro) → pro (getWitness evi)
getProof (Evidence wit prf ) = prf

Note that the second projection (getProof ) returns a value whose type depends on the value of
the first component of the pair.

When we want to underline the dependent pair interpretation we use a data type called Σ.

Remark: Idris treats values of its pre-defined types Exists a pro and Σ a pro slightly differently
but we do not need to be concerned with these differences here.

4.6 Specifications and program correctness

One important application of dependently typed programming is for writing programs that are
correct by construction.

There are two methodologies for assessing the correctness of programs: testing and proving [3].
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Testing is well suited for showing the presence of errors. Proving is good at showing their absence.
Thus, the methodologies are complementary.

Proving the correctness of a program requires two steps. First, one has to specify what it means
for the program to be correct. Second, one has to exhibit a proof of correctness.

In non dependently typed languages, both steps have to be undertaken in a suitable formal lan-
guage (external to the programming language). Specification languages [2, 1, 4] and formal meth-
ods of program derivation provide specific support for one or both steps.

In dependently typed languages, we do not need to rely on external specification languages. We
can use the same language to

• Specify a program P .

• Implement P .

• Prove that P fulfills its specification.

Let us look at an example for the type of binary trees defined by

data BinTree : Type → Type where
Leaf : a → BinTree a
Branch : BinTree a → BinTree a → BinTree a

In Idris we can specify what it means for the following function

mapBinTree : (a → b) → BinTree a → BinTree b

to be correct

mapBinTreeSpec1 : (bt : BinTree a) → mapBinTree id bt = id bt

mapBinTreeSpec2 : (f : b → c) → (g : a → b) →
mapBinTree (f ◦ g) = mapBinTree f ◦mapBinTree g

, implement mapBinTree

mapBinTree f (Leaf x ) = Leaf (f x )

mapBinTree f (Branch l r) = Branch (mapBinTree f l) (mapBinTree f r)

and prove that the implementation fulfills its specification:

cong2 : {a1, a2 : a } → {b1, b2 : b} → {f : a → b → c} →
(a1 = a2) → (b1 = b2) → f a1 b1 = f a2 b2

cong2 Refl Refl = Refl

mapBinTreeSpec1base : (x : a) → mapBinTree id (Leaf x ) = id (Leaf x )
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mapBinTreeSpec1base x = (mapBinTree id (Leaf x ))

= {Refl } =

(Leaf (id x ))

= {Refl } =

(Leaf x )

= {Refl } =

(id (Leaf x ))

QED

mapBinTreeSpec1step : (l : BinTree a) → (r : BinTree a) →
(ihl : mapBinTree id l = id l) → (ihr : mapBinTree id r = id r) →
mapBinTree id (Branch l r) = id (Branch l r)

mapBinTreeSpec1step l r ihl ihr = (mapBinTree id (Branch l r))

= {Refl } =

(Branch (mapBinTree id l) (mapBinTree id r))

= {cong2 ihl ihr } =

(Branch (id l) (id r))

= {Refl } =

(Branch l r)

= {Refl } =

(id (Branch l r))

QED

mapBinTreeSpec1 (Leaf x ) = mapBinTreeSpec1base x

mapBinTreeSpec1 (Branch l r) = mapBinTreeSpec1step l r ihl ihr where

ihl = mapBinTreeSpec1 l

ihr = mapBinTreeSpec1 r

There is, however, a subtle difference between the statement of mapBinTreeSpec1 and mapBinTreeSpec2
above which we need to address. The first is stated as a pointwise property, while the second is
stated as an extensional equality of functions. Abstractly, for given functions f , g : a → b, the
first is a statement of the form

(1) ∀x : b, f x = g x

while the second has the form

(2) f = g .

In the intuitionistic logic underlying Idris, (2)⇒ (1) is provable, but (1)⇒ (2) is not (as the theory
has models in which the latter implication does not hold).

If we want to prove a statement such as this, we thus cannot avoid to postulate that pointwise
equality of functions implies extensional equality of functions:
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Idris Logic
p : pro p is a proof of pro
Void (empty type) False
() (singleton type) True
p → q p implies q
Exists a pro there exists a wit such that pro wit holds
(x : a) → pro x forall x of type a, pro x holds

Table 1: Curry-Howard correspondence relating Idris and logic on the type level.

funext : (f , g : a → b) → ((x : a) → f x = g x ) → f = g

Using this postulate, we can first prove the pointwise statement

mapBinTreeSpec2a : (bt : BinTree a) → (f : b → c) → (g : a → b) →
mapBinTree (f ◦ g) bt = (mapBinTree f ◦mapBinTree g) bt

and then use funext to derive maBinTreeSpec2 as stated above.

Exercise 4.4. Implement first mapBinTreeSpec2a, then use funext to prove mapBinTreeSpec2 .

4.7 Programs, proofs, totality and termination

We have seen that we can represent properties as types and in this view proofs are just values of
these types.

We sum up (a part of) the correspondence between Idris and logic in Table 1. (This correspondence
goes in fact much deeper than conveyed by the table.  see L4E1)

When we embed logic in a programming language, we have to be careful about two notions: totality
and termination. (Non-termination of programs can be seen as counterpart to logical paradoxes,
 see L4E1.)

A total function f : a → b is defined for all type correct inputs.

A partial function would be undefined on some of x : a.

Partial functions can be very useful. But proofs shall always be total.

If we allowed partial functions to silently compromise the totality of proofs, we could easily prove
any theorem, including patently false ones. Consider the function headL : List a → a

partial
headL : List a → a
headL (x :: xs) = x
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This is a partial function because it is not defined for the empty list. Using headL we could easily
”prove” that every natural number is zero:

aNecessarilyEmptyList : List Void

aNecessarilyEmptyList = [ ]

surprise : (n : N) → n = 0

surprise n = void (headL aNecessarilyEmptyList)

The Idris type checker realizes that we are trying to fool the system and that surprise cannot be
total.

The second potential problem is non-termination. A function may cover all cases, but still fail to
terminate. The extreme case is a completely circular definition

circular : Void
circular = circular

Idris will warn about missing cases and potentially non-terminating loops in definitions that are
required to be total .

4.8 Type checking and correctness

With dependently typed languages, we can require the type checker to verify that a certain pro-
gram implementation is correct with respect to its specification.

This methodology yields programs that are correct by construction. This is the highest standard
we can aim for in programming.

Crucial components of the methodology are totality and termination checks.

Termination checks are necessarily conservative: failures to pass the tests mean that the program
might not terminate, not that it will not terminate.

Conversely, a program that passes a termination test will always terminate, at least in principle.
Of course, memory limitations and hardware failures can always in practice prevent a computation
from terminating.

Beyond providing dependent types and totality and termination checks, Idris supports a program-
ming methodology that aims at increasing the correctness of programs incrementally.

The idea is to first fulfill program specifications conditionally on the basis of suitable postulates.
These are then eliminated stepwise, eventually leading to unconditional correctness proofs.
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4.9 Coming up

In the next lecture, we will start looking at the formalization of dynamical systems and the problem
of decision making under uncertainty.
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Solutions

Exercise 4.1:

The type of functions from natural numbers to Bool .

Exercise 4.2:

Optimal : (X → Y ) → Type
Optimal p = (x : X ) → (y : Y ) → val x y 6 val x (p x )

What is the type of 6?

Exercise 4.3:

The expressions are 3 ∗ 2 on the LHS and 6 on the RHS

Exercise 4.4:

mapBinTreeSpec2a : (bt : BinTree a) → (f : b → c) → (g : a → b) →
mapBinTree (f ◦ g) bt = (mapBinTree f ◦mapBinTree g) bt

mapBinTreeSpec2base : (x : a) → (f : b → c) → (g : a → b) →
mapBinTree (f ◦ g) (Leaf x ) =

(mapBinTree f ◦mapBinTree g) (Leaf x )

mapBinTreeSpec2base x f g = (mapBinTree (f ◦ g) (Leaf x ))

= {Refl } =

(Leaf ((f ◦ g) x ))

= {Refl } =

(Leaf (f (g x )))

= {Refl } =

(mapBinTree f (Leaf (g x )))

= {Refl } =

(mapBinTree f (Leaf (g x )))

= {Refl } =

(mapBinTree f (mapBinTree g (Leaf x )))

= {Refl } =

((mapBinTree f ◦mapBinTree g) (Leaf x ))>
QED

mapBinTreeSpec2step : (l : BinTree a) → (r : BinTree a) → (f : b → c) → (g : a → b) →
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(iHl : mapBinTree (f ◦ g) l = (mapBinTree f ◦mapBinTree g) l) →
(iHr : mapBinTree (f ◦ g) r = (mapBinTree f ◦mapBinTree g) r) →
mapBinTree (f ◦ g) (Branch l r) = (mapBinTree f ◦mapBinTree g) (Branch l r)

mapBinTreeSpec2step l r f g ihl ihr
= (mapBinTree (f ◦ g) (Branch l r))

= {Refl } =

(Branch (mapBinTree (f ◦ g) l) (mapBinTree (f ◦ g) r))

= {cong2 ihl ihr } =

(Branch

((mapBinTree f ◦mapBinTree g) l)

((mapBinTree f ◦mapBinTree g) r))

= {Refl } =

(mapBinTree f (Branch (mapBinTree g l) (mapBinTree g r)))

= {Refl } =

((mapBinTree f ◦mapBinTree g) (Branch l r))

QED

mapBinTreeSpec2a (Leaf x ) f g = mapBinTreeSpec2base x f g

mapBinTreeSpec2a (Branch l r) f g = mapBinTreeSpec2step l r f g ihl ihr where

ihl = mapBinTreeSpec2a l f g

ihr = mapBinTreeSpec2a r f g

helper : (f : b → c) → (g : a → b) → (bt : BinTree a) →
mapBinTree (f ◦ g) bt = (mapBinTree f ◦mapBinTree g) bt

helper f g bt = mapBinTreeSpec2a bt f g

mapBinTreeSpec2 f g = funext (mapBinTree (f ◦ g)) (mapBinTree f ◦mapBinTree g)
(helper f g)
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With basic ideas about problem specification and the support of a specification language, we turn
back to the problem of understanding decision making under uncertainty.

As a first step, we look at time discrete deterministic dynamical systems. This notion is funda-
mental in modelling, in particular in earth system modelling. This is because of two reasons:

• Continuous dynamical systems have typically to be approximated. This is done in terms of
discrete systems.

• Deterministic dynamical systems are special cases of more general non-deterministic, stochas-
tic, fuzzy, etc. systems.

5.1 Discrete deterministic dynamical systems

A time discrete deterministic dynamical system (in short, a deterministic system) on a set X is a
function of type X → X .

Remember that in dependently typed languages sets and propositions are encoded through types.
Thus, a natural formalization of the notion is

DetSys : Type → Type

DetSys X = X → X

We can also introduce the notion (of a discrete deterministic dynamical system) through a data
declaration

data DetSys : Type → Type where

MkDetSys : {X : Type } → (X → X ) → DetSys X

A specific system on X is then declared to be a value of type DetSys X . The domain of
f : DetSys X is often called the state space of f :

StateSpace : {X : Type } → DetSys X → Type

StateSpace = Domain

The most obvious operation that we can do with a system is to iterate it a certain number of
steps. This is often called the flow of the system:

flow : {X : Type } → N → DetSys X → DetSys X

flow Z f x = x

flow (S n) f x = flow n f (f x )

Notice that flow n f can also be defined in a point-free notation

flow : {X : Type } → N → DetSys X → DetSys X

flow Z f = id

flow (S n) f = (flow n f ) ◦ f

and that flow n f has the same type as f . In physics, the standard notation for flow n f is fn.
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Exercise 5.1. Encode the mathematical specification

∀m,n ∈ N, f : DetSys X , x ∈ X , flow (m + n) f x = flow n f (flow m f x )

in Idris through the type of an flowSpec value.

Exercise 5.2. Implement flowSpec by pattern matching on m.

Another fundamental notion in dynamical systems theory is that of the trajectory (of a dynamical
system) starting at a certain initial state:

trj : {X : Type } → (n : N) → DetSys X → X → Vect (S n) X

trj Z f x = x :: Nil

trj (S n) f x = x :: trj n f (f x )

Exercise 5.3. trj fulfills a specification similar to flowSpec. Encode this specification in the type
of a function trjSpec using only flow , tail : Vect (S n) X → Vect n X and vector concatenation.

Exercise 5.4. Implement trjSpec on the basis of

postulate trjLemma1 : {X : Type } → (m : N) → (f : DetSys X ) → (x : X ) →
head (trj m f x ) = x

postulate trjLemma2 : {X : Type } → (m : N) → (f : DetSys X ) → (x : X ) →
tail (trj (S m) f x ) = trj m f (f x )

and

postulate headTailLemma : {n : N} → {A : Type } →
(xs : Vect (S n) A) → head xs :: tail xs = xs

Perhaps not surprisingly, the last element of the trajectory of length n of f : DetSys X starting
in x is just flow n f x :
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flowTrjLemma : {X : Type } →
(n : N) → (f : DetSys X ) →
(x : X ) → flow n f x = last (trj n f x )

Exercise 5.5. Implement flowTrjLemma on the basis of

postulate lastLemma : {A : Type } → {n : N} →
(x : A) → (xs : Vect (S n) A) → last (x :: xs) = last xs

5.2 Discrete non-deterministic dynamical systems

What if the outcome of a system is uncertain? In this case, for a given x : X we can have more
than one possible next state.

If we do not have any additional information, we say that the system is non-deterministic. In this
case, we can represent all possible next states by a list:

NonDetSys : Type → Type

NonDetSys X = X → List X

Lists are equipped with so-called return, join and map operations

retList : {A : Type } → A → List A

retList x = x :: Nil

joinList : {A : Type } → List (List A) → List A

joinList Nil = Nil

joinList (xs :: xss) = xs ++ joinList xss

mapList : {A,B : Type } → (A → B) → List A → List B

mapList f Nil = Nil
mapList f (x :: xs) = f x :: mapList f xs

that fulfill certain naturality conditions. For instance, mapList f (retList x ) = retList (f x ):

∗ Lecture5 > retList 3

[3] : List Integer

and

∗ Lecture5 >mapList (2+) (retList 1) = retList (2 + 1)
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[3] = [3] : Type

and

∗ Lecture5 > joinList [[1, 5, 4], [3, 4, 9]]

[1, 5, 4, 3, 4, 9] : List Integer

Remark: Every deterministic system f : X → X can be represented by a non-deterministic
system:

embedDetIntoNonDet : {X : Type } → DetSys X → NonDetSys X

embedDetIntoNonDet f = retList ◦ f

Using mapList and joinList one can implement a function

flowNonDetSys : {X : Type } → (m : N) → NonDetSys X → NonDetSys X

that iterates a non-deterministic system:

flowNonDetSys Z f x = retList x

flowNonDetSys (S m) f x = joinList (mapList (flowNonDetSys m f ) (f x ))

Notice that, if we define

bindList : {A,B : Type } → (A → List B) → List A → List B

bindList f as = joinList (mapList f as)

the second clause of flowNonDetSys can be written as

flowNonDetSys (S m) f x = bindList (flowNonDetSys m f ) (f x )

A comparison with the flow of deterministic systems

flow (S m) f x = flow m f (f x ) = (flow m f ) (f x ) = ((flow m f ) ◦ f ) x

suggests that bindList is a kind of evaluation. Consistently with this interpretation, one has

Lemma: ∀m,n ∈ N, f : NonDetSys X , x ∈ X , flow ′ (m+n) f x = bindList (flow ′ n f ) (flow ′ m f x )
with flow ′ = flowNonDetSys.

We will prove the lemma in a more generic setup in lecture 6. Next, consider

repr : {X : Type } → NonDetSys X → DetSys (List X )

repr = bindList

The function associates to any non-deterministic system on an arbitrary type X , a deterministic
system on List X . We say that repr f is the deterministic representation of f . This terminology
is justified by the result:

reprLemma : {X : Type } → (n : N) → (f : NonDetSys X ) →
(xs : List X ) → repr (flowNonDetSys n f ) xs = flow n (repr f ) xs
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Exercise 5.6. Implement reprLemma using:

bindListPresExtEq : {A,B : Type } → (f , g : A → List B) →
((a : A) → f a = g a) →
((as : List A) → bindList f as = bindList g as)

rightIdentityList : {A : Type } → (as : List A) → bindList retList as = as

bindListAssociative : {A,B ,C : Type } → (f : A → List B) → (g : B → List C ) →
(as : List A) →
bindList (bindList g ◦ f ) as = bindList g (bindList f as)

Exercise 5.7. Implement bindListPresExtEq and rightIdentityList . Start by implementing

mapListPresExtEq : {A,B : Type } → (f , g : A → List B) →
((a : A) → f a = g a) →
((as : List A) → mapList f as = mapList g as)

Exercise 5.8. The funcion flowNonDetSys produces a lot of duplicates. For instance, for

f : N → List N
f Z = [Z ,S Z ]

f (S m) = [m,S m,S (S m)]

one obtaines

∗ Lecture5 > flowNonDetSys 3 f Z

[0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 3] : List N

The function nub eliminates list duplicates:

∗ Lecture5 > nub (flowNonDetSys 3 f Z )

[0, 1, 2, 3] : List N

Using nub, write a function flowNonDetSys ′ that produces no duplicates and runs faster (for a
large enough number of iterations) than the original version.
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In much the same way as we can iterate non-deterministic systems a fixed number of times, we
can compute all the possible trajectories of fixed length that start at a given initial value:

trjNonDetSys : {X : Type } → (n : N) → NonDetSys X → X → List (Vect (S n) X )

trjNonDetSys Z f x = mapList (x ::) (retList Nil)

trjNonDetSys (S n) f x = mapList (x ::) (bindList (trjNonDetSys n f ) (f x ))

Exercise 5.9. trjNonDetSys computes all the possible trajectories of a system starting from a
given initial value. For instance

∗ Lecture5 > trjNonDetSys 0 f Z

[[0]] : List (Vect 1 N)

∗ Lecture5 > trjNonDetSys 1 f Z

[[0, 0], [0, 1]] : List (Vect 2 N)

∗ Lecture5 > trjNonDetSys 2 f Z

[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 2]] : List (Vect 3 N)

Explain the implementation of trjNonDetSys. What is the type of x ::? What is the type of
Nil on the RHS of trjNonDetSys Z f x? What are the types of trjNonDetSys n f , f x and
bindList (trjNonDetSys n f ) (f x )?

5.3 Discrete stochastic dynamical systems

Sometimes we know enough about a system to be able to estimate its transition probabilities.

In this case, we say that the system is stochastic. Stochastic systems can be described by functions
of type X → Prob X . Here Prob X represents the type of finite probability distributions on X :

Prob : Type → Type

We are not going to define Prob in this lecture. Instead, we specify properties that finite proba-
bility distributions are required to fulfill.

Let us first recall the basic notions of elementary probability theory, that is, of probability theory
for finite, non-empty sets.

In this context, events are subsets of a finite, non-empty set X : Event X = P X . The set
X represents the possible outcomes of a random process and a probability is a function of type
Event X → R that fulfilsl the axioms (Kolmogorov, 1933):
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1. ∀e ∈ Event X , P e > 0.

2. P ∅ = 0 and P X = 1.

3. ∀e, e ′ ∈ Event X , e ∩ e ′ = ∅⇒ P (e ∪ e ′) = P e + P e ′.

In elementary probability theory, a probability distribution on a finite, non-empty set X is a func-
tion π : X → R such that

∑
x∈X π x = 1.

Thus, a probability distribution π : X → R induces a probability function Pπ : Event X → R
via Pπ e =

∑
x∈e π x .

We can formalize this fragment of probability theory in Idris by representing probability distribu-
tions on values of a type X by values of type Prob X .

In this formalization, X does not need to be a finite type. But the set of values of type X whose
probability is non-zero has to be finite. For pd : Prob X , we call this set the support of pd :

supp : {A : Type } → Prob A → List A

The probability associated with a probability distribution pd : Prob X is then given by prob pd
with

prob : {A : Type } → Prob A → (A → Bool) → R

where prob pd e represents the probability of the event e according to pd . As in the case of non-
deterministic systems, we require Prob X to be equipped with return, join and map operations:

retProb : {A : Type } → A → Prob A

joinProb : {A : Type } → Prob (Prob A) → Prob A

mapProb : {A,B : Type } → (A → B) → Prob A → Prob B

These have natural interpretations in probability theory. Thus, retProb is the function that asso-
ciates to any value x of an arbitrary type X the probability distribution concentrated on x :

prob (retProb x ) e = 1 ⇐⇒ e x = True

prob (retProb x ) e = 0 ⇐⇒ e x = False

joinProb is the function that reduces probability distributions over probability distributions over
X to probability distributions over X . It fulfills

prob (joinProb pd2 ) e = sum [prob pd2 (is pd) ∗ prob pd e | pd ← supp pd2 ]

which can be interpreted as the ”law of total probability”: here is pd is the characteristic function
of pd
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is : {A : Type } → Eq A⇒ A → A → Bool
is a a ′ = a a ′

and thus, for x ! = y , is x and is y are disjoint events. With retProb, joinProb, mapProb and

StochSys : Type → Type

StochSys X = X → Prob X

we can implement a function

flowStochSys : {X : Type } → (m : N) → StochSys X → StochSys X

that computes all the states that can be obtained by iterating a stochastic system starting from
an initial x : X . The implementation can be derived by copy & paste from flowNonDet :

flowStochSys Z f x = retProb x

flowStochSys (S m) f x = joinProb (mapProb (flowStochSys m f ) (f x ))

Similarly, one can implement bind , repr , reprLemma, trj , etc. for stochastic systems with obvious
interpretations.

In the next lecture we will amalgamate the commonalities between deterministic, non-deterministic
and stochastic systems in the notion of monadic dynamical systems.

Monadic dynamical systems allow one to account for different kinds of uncertainties in a simple
and seamless way.

Solutions

Exercise 5.1:

flowSpec : {X : Type } → (m : N) → (n : N) → (f : DetSys X ) → (x : X ) →
flow (m + n) f x = flow n f (flow m f x )

Exercise 5.2:

flowSpec Z n f x = (flow (Z + n) f x )

= {Refl } =

(flow n f x )

= {Refl } =

(flow n f (flow Z f x ))

QED
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flowSpec (S m) n f x = (flow ((S m) + n) f x )

= {Refl } =

(flow (S (m + n)) f x )

= {Refl } =

(flow (m + n) f (f x ))

= {flowSpec m n f (f x )} =

(flow n f (flow m f (f x )))

= {Refl } =

(flow n f (flow (S m) f x ))

QED

Exercise 5.3:

trjSpec : {X : Type } → (m : N) → (n : N) → (f : DetSys X ) → (x : X ) →
trj (m + n) f x = trj m f x ++ tail (trj n f (flow m f x ))

Exercise 5.4:

trjSpec Z n f x = (trj (Z + n) f x )

= {Refl } =

(trj n f x )

= {sym (headTailLemma (trj n f x ))} =

(head (trj n f x ) :: tail (trj n f x ))

= {replace {P = λX ⇒ head (trj n f x ) :: tail (trj n f x )
=

X :: tail (trj n f x )}
(trjLemma1 n f x ) Refl } =

(x :: tail (trj n f x ))

= {Refl } =

((x :: Nil) ++ tail (trj n f x ))

= {Refl } =

(trj Z f x ++ tail (trj n f (flow Z f x )))

QED

trjSpec (S m) n f x = (trj ((S m) + n) f x )

= {Refl } =

(trj (S (m + n)) f x )
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= {Refl } =

(x :: trj (m + n) f (f x ))

= {replace {P = λX ⇒ x :: trj (m + n) f (f x ) = x :: X }
(trjSpec m n f (f x )) Refl } =

(x :: (trj m f (f x ) ++ tail (trj n f (flow m f (f x )))))

= {Refl } =

((x :: trj m f (f x )) ++ tail (trj n f (flow m f (f x ))))

= {Refl } =

(trj (S m) f x ++ tail (trj n f (flow m f (f x ))))

= {Refl } =

(trj (S m) f x ++ tail (trj n f (flow (S m) f x )))

QED

Exercise 5.5:

flowTrjLemma Z f x = (flow Z f x )

= {Refl } =

(x )

= {Refl } =

(last (trj Z f x ))

QED

flowTrjLemma (S m) f x = (flow (S m) f x )

= {Refl } =

((flow m f ) (f x ))

= {flowTrjLemma m f (f x )} =

(last (trj m f (f x )))

= {sym (lastLemma x (trj m f (f x )))} =

(last (x :: trj m f (f x )))

= {Refl } =

(last (trj (S m) f x ))

QED

Exercise 5.6:

reprLemma Z f xs = (repr (flowNonDetSys Z f ) xs)

= {Refl } =
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(bindList (flowNonDetSys Z f ) xs)

= {bindListPresExtEq (flowNonDetSys Z f ) retList (λa ⇒ Refl) xs } =

(bindList retList xs)

= {rightIdentityList xs } =

(xs)

= {Refl } =

(flow Z (repr f ) xs)

QED

reprLemma (S m) f xs = (repr (flowNonDetSys (S m) f ) xs)

= {Refl } =

(bindList (flowNonDetSys (S m) f ) xs)

= {bindListPresExtEq (flowNonDetSys (S m) f )
(λx ⇒ bindList (flowNonDetSys m f ) (f x ))
(λx ⇒ Refl)
xs } =

(bindList (λx ⇒ bindList (flowNonDetSys m f ) (f x )) xs)

= {bindListAssociative f (flowNonDetSys m f ) xs } =

(bindList (flowNonDetSys m f ) (bindList f xs))

= {Refl } =

(repr (flowNonDetSys m f ) (bindList f xs))

= {reprLemma m f (bindList f xs)} =

(flow m (repr f ) (bindList f xs))

= {Refl } =

(flow m (repr f ) (repr f xs))

= {Refl } =

(flow (S m) (repr f ) xs)

QED

Exercise 5.7:

mapListPresExtEq : {A,B : Type } → (f , g : A → List B) →
((a : A) → f a = g a) →
((as : List A) → mapList f as = mapList g as)

mapListPresExtEq f g p Nil = Refl

mapListPresExtEq f g p (a :: as) = (mapList f (a :: as))

= {Refl } =
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(f a :: mapList f as)

= {cong {f = λα⇒ α :: mapList f as } (p a)} =

(g a :: mapList f as)

= {cong (mapListPresExtEq f g p as)} =

(g a :: mapList g as)

= {Refl } =

(mapList g (a :: as))

QED

bindListPresExtEq : {A,B : Type } → (f , g : A → List B) →
((a : A) → f a = g a) →
((as : List A) → bindList f as = bindList g as)

bindListPresExtEq f g p as = (bindList f as)

= {Refl } =

(joinList (mapList f as))

= {cong (mapListPresExtEq f g p as)} =

(joinList (mapList g as))

= {Refl } =

(bindList g as)

QED

rightIdentityList : {A : Type } → (as : List A) → bindList retList as = as

rightIdentityList Nil = Refl

rightIdentityList (a :: as) = (bindList retList (a :: as))

= {Refl } =

(joinList (mapList retList (a :: as)))

= {Refl } =

(joinList (retList a :: mapList retList as))

= {Refl } =

(retList a ++ joinList (mapList retList as))

= {Refl } =

(retList a ++ bindList retList as)

= {cong (rightIdentityList as)} =

(retList a ++ as)

= {Refl } =

((a :: Nil) ++ as)
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= {Refl } =

(a :: (Nil ++ as))

= {Refl } =

(a :: as)

QED

Exercise 5.8:

flowNonDetSys ′ : {X : Type } → (Eq X )⇒ (m : N) → NonDetSys X → NonDetSys X

flowNonDetSys ′ Z f x = retList x

flowNonDetSys ′ (S m) f x = nub (joinList (mapList (flowNonDetSys ′ m f ) (f x )))
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6.1 Natural transformations, monads

• The implementations of flow and trj for List and Prob are, mutatis mutandis, the same.

• Any deterministic system can be represented by an equivalent non-deterministic or stochastic
system and the other way round!

As it turns out, Identity ,List ,Prob are monads. In category theory, a monad is an endo-functor
M on a category C together with two natural transformations η and µ such that

M X M (M X) M X

M X

η (MX)

id
µ X

M (η X)

id

M (M (M X)) M (M X)

M (M X) M X

M (µX)

µ (MX) µX

µX

commute. A natural transformation γ between two functors F and G between categories A and
B, is a family of arrows in B indexed by objects in A such that (G f ) ◦ (η X ) = (η Y ) ◦ (F f )
(left). For η : X → M X and µ : M (M X ) → M X this condition is captured in the middle
and right diagrams:

F X F Y

GX GY

F f

γ X γ Y

Gf

X Y

M X M Y

f

η X η Y

M f

M (M X) M (M Y )

M X M Y

M (M f)

µX µY

M f

Thus, a monad is a functor with the additional properties:

1. Naturality of η: (M f ) ◦ (η X ) = (η Y ) ◦ f .

2. Naturality of µ: (M f ) ◦ (µ X ) = (µ Y ) ◦ (M (M f )) .

3. Triangle left: (µ X ) ◦ (η (M X )) = id .

4. Triangle right: (µ X ) ◦ (M (η X )) = id .

5. Square: (µ X ) ◦ (M (µ X )) = (µ X ) ◦ (µ (M X )).

6.2 Interfaces, implementations and generic programming

In Idris, the notions of functor and monad are encoded in a hierarchy of interfaces. Idris interfaces
(in Haskell type classes) factor in the common features (methods and axioms) of a certain class
of data types. For instance, the Num interface describes the common features of data types that
implement basic numerical arithmetic:

interface Num ty where

(+) : ty → ty → ty

(∗) : ty → ty → ty
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fromInteger : Integer → ty

A data type for which (+), (∗) and fromInteger can be defined, can be declared to be an imple-
mentation (or an instance) of Num. For example, N, Int and Double are all implementation of
Num.

For a specific data type, this is done by defining (+), (∗) and fromInteger for that type. For
instance, for N:

implementation Num N where

(+) = plus

(∗) = mult

fromInteger = fromIntegerNat

where plus,mult : N → N → N and fromIntegerNat : Integer → N have to be completely
defined and in scope.

Another example of interfaces that we have already encountered in lecture 5 is Eq . This represents
the class of types that can be compared for equality. Like Num, Eq is defined in the Idris prelude:

interface Eq ty where

( ) : ty → ty → Bool

( 6 ) : ty → ty → Bool

x 6 y = ¬ (x y)

x y = ¬ (x 6 y)

Notice that Eq specifies default methods for ( ) and ( 6 ). Implementations of Eq have to define
one of them but they can also define both. Idris interfaces can be refined. For instance

interface Num ty ⇒ Neg ty where

negate : ty → ty

(−) : ty → ty → ty

requires implementations of Neg to implement the features of Num plus negate and (−). Imple-
mentations can also be derived generically from other implementations. For instance

implementation (Eq a,Eq b)⇒ Eq (a, b) where

( ) (a, c) (b, d) = (a b) ∧ (c d)

explains how values of type (a, b) (for arbitrary types a and b)can be compared for equality, pro-
vided that both values of type a and values of type b can be compared for equality.

Interfaces are a powerful mechanism for generic programming. One can define functions that work
for all implementations of one or more interfaces. We have already seen an example with nub:

∗ Lecture6 > : t nub

Prelude.List .nub : Eq a ⇒ List a → List a
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∗ Lecture6 > : t sum

sum : Foldable t ⇒ Num a ⇒ t a → a

6.3 Functor and monad interfaces

In category theory, a functor between categories A and B, is a mapping of objects and arrow of A
into objects and arrows of B that preserves identity and composition.

In discussing the notion of a monad, we have required M to be and endo-functor on a category
C and used X , Y , M X , M Y (amd M (M X ), M (M (M Y )), etc.) to denote objects in C.
Similarly, we have used M f , M (η X ), etc. to denote arrows, also in C.

In Idris the notion of a monad is encoded in a hierarchy of interfaces. Both for historical reasons
and for reasons that we do not have time to discuss in this course, this hierarchy is not as straight-
forward as the category-theoretical notion.

To understanding monadic dynamical system and, more generally, the computational theory of
policy advice and verified, optimal decision making discussed in [3], it is not necessary to under-
stand the details of this hierarchy.

However, it is useful to keep in mind the category-theoretical notions of functor and monad and
be comfortable with the basic interfaces that encode these notions in Idris. These are, with some
simplifications

interface Functor (F : Type → Type) where

map : (A → B) → F A → F B

interface Functor M ⇒ Monad (M : Type → Type) where

pure : A → M A

(>>=) : M A → (A → M B) → M B

join : M (M A) → M A

Thus, in Idris, the arrow mapping part of a functor F is called map and the natural transformations
η and µ associated with a monad M are called pure (or return) and join, respectively. The
operation (>>=) is usually referred to as “bind” and can be derived from join and map.

Many Idris type constructors turn out to be monads. In particular, List is a monad and Prob is
a monad with map, pure, (>>=) and join defined by mapList , retList , bindList , . . . , joinProb as
discussed in lecture 5.

Traditionally, the Idris Functor and Monad interfaces specify only methods, not properties. These
are collected in suitable refinements of the base interfaces: VeriFunctor and VeriMonad . Thus, a
VeriFunctor is a Functor whose map preserves identity, composition and extensional equality:
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interface Functor F ⇒ VeriFunctor (F : Type → Type) where

mapPresId : ExtEq (map id) id

mapPresComp : (f : A → B) → (g : B → C ) → ExtEq (map (g ◦ f )) (map g ◦map f )

mapPresExtEq : (f , g : A → B) → ExtEq f g → ExtEq (map f ) (map g)

In the above interface, ExtEq is a property of functions of the same type:

ExtEq : (f , g : A → B) → Type

ExtEq f g = (a : A) → f a = g a

Thus, mapPresId posits that map id fa = id fa = fa for arbitrary fa.

Exercise 6.1. Implement mapPresId for F = List , map = mapList and mapList defined as in
lecture 5.

Similarly, mapPresComp posits that for arbitrary types A, B and C , for every f : A → B and
g : B → C and for every fa of suitable type

map (g ◦ f ) fa = (map g ◦map f ) fa = map g (map f fa)

Exercise 6.2. What is the type of fa in the above equation? What is the type of map f fa?

The last axiom of VeriFunctor requires map to preserve extensional equality. We will come back
to this axiom later in this lecture. For the time being, we remark that all functors encountered so
far fulfill this axiom.

Exercise 6.3. Implement mapPresExtEq for F = List , map = mapList and mapList defined as
in lecture 5.

Consistently with the category-theoretical characterization of monads discussed above, a VeriMonad
is then a VeriFunctor together with two natural transformations η and µ that fulfill the monadic
axioms 1-5. In Idris, η is called pure (or ret) and µ is called join:

interface (VeriFunctor M ,Monad M )⇒ VeriMonad (M : Type → Type) where

pureNatTrans : (f : A → B) → ExtEq (map f ◦ pure) (pure ◦ f )

joinNatTrans : (f : A → B) → ExtEq (map f ◦ join) (join ◦map (map f ))

triangleLeft : ExtEq (join ◦ pure) id

triangleRight : ExtEq (join ◦map pure) id
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squareLemma : ExtEq (join ◦map join) (join ◦ join)

bindJoinMapSpec : (f : A → M B) → ExtEq (>>=f ) (join ◦map f )

The last axiom of VeriMonad posits that ma >>= f = join (map f ma) for all ma and f of suitable
types. The definition of bindList from lecture 5 (with flipped arguments) fulfills this axiom. The
axioms of VeriMonad allow to derive a number of important, generic results. In the rest of this
lecture, we will make use of the following ones:

||| ∀f ,∀g , (∀a, f a = g a)⇒ (∀ma,ma >>= f = ma >>= g)

bindPresExtEq : {M : Type → Type } → {A,B : Type } → (VeriMonad M )⇒
(f , g : A → M B) → ExtEq f g → ExtEq (>>=f ) (>>=g)

||| ∀f ,∀a, (pure a)>>= f = f a

leftIdentity : {M : Type → Type } → {A,B : Type } → (VeriMonad M )⇒
(f : A → M B) → ExtEq (λa ⇒ (pure a)>>= f ) f

||| ∀ma,ma >>= pure = ma

rightIdentity : {M : Type → Type } → {A : Type } → (VeriMonad M )⇒
ExtEq {A = M A} (>>=pure) id

||| ∀f ,∀g ,∀ma, (ma >>= f )>>= g = ma >>= (λa ⇒ (f a)>>= g)

associativity : {M : Type → Type } → {A,B ,C : Type } → (VeriMonad M )⇒
(f : A → M B) → (g : B → M C ) →
ExtEq (λma ⇒ (ma >>= f )>>= g) (>>=(λx ⇒ (f x )>>= g))

||| ∀f ,∀g ,∀ma,map f (ma >>= g) = ma >>= map f ◦ g

mapBindLemma : {M : Type → Type } → {A,B ,C : Type } → (VeriMonad M )⇒
(f : B → C ) → (g : A → M B) →
ExtEq {A = M A} (λma ⇒ map f (ma >>= g)) (>>=map f ◦ g)

Implementations can be found in the VeriMonad component of [2].

The notion of monad is fundamental in computer science and its usage and applications are ubiq-
uitous in functional programming languages. Among others, monads support the implementation
of functional programs in an imperative style via the so-called do notation:

m add : Maybe Int → Maybe Int → Maybe Int

m add x y = do x ′ ← x -- Extract value from x

y ′ ← y -- Extract value from y

pure (x ′ + y ′) -- Add them

The data type Maybe which allows to model partial functions in a controlled fashion

data Maybe : (a : Type) → Type where
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Nothing : Maybe a

Just : (x : a) → Maybe a

is a monad, and (>>=) for Maybe fulfills the specification

Nothing >>= f = Nothing

(Just x ) >>= f = f x

and the do expression on the RHS of m add x y = above is syntactic sugar for

m add : Maybe Int → Maybe Int → Maybe Int

m add x y = x >>= (λx ′ ⇒ (y >>= (λy ′ ⇒ pure (x ′ + y ′))))

Exercise 6.4. What is the result of m add (Just 2) Nothing? Apply the definition of m add to
give an semi-formal proof of the result by equational reasoning.

The do-notation is also the basis for list comprehension as for instance in

∗ Lecture6 > [2 ∗ i | i ← [3, 0, 1]]

[6, 0, 2] : List Integer

More generally, monads are used to encapsulate various kinds of “computational effects” and
thereby allow to model computations with side-effects in a purely functional setting. The idea to
use monads for this purpose goes back to a seminal paper by Moggi [5] and was further popularized
by Wadler [6].

6.4 Monadic systems

The notion od monadic dynamical system was originally introduced by C. Ionescu in [4].

In a nutshell, the idea is to account for different kinds of uncertainty in dynamical systems –
deterministic, non-deterministic, stochastic, etc. as discussed in lecture 5 – in a seamless way.

This also makes it possible to prove important results (like for instance the representation theo-
rems of lecture 5) for the general case and avoid tedious and error-prone repetitions. We follow
essentially the pattern of definitions and proofs put forward in lecture 5.

6.4.1 Preliminaries

A discrete monadic dynamical system on a set X is a function of type X → M X where M is a
monad:
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MonadicSys : (M : Type → Type) → Type → Type

MonadicSys M X = X → M X

The set X in f : MonadicSys M X is often called the ”state space” of the system f :

StateSpace : {M : Type → Type } → {X : Type } → MonadicSys M X → Type

StateSpace = Domain

Every deterministic system on X can be represented by a monadic systems on X :

embed : {M : Type → Type } → {X : Type } → Monad M ⇒ DetSys X → MonadicSys M X

embed f = pure ◦ f

6.4.2 Flow

The flow of a monadic system f over t steps is another monadic system:

flow : {M : Type → Type } → {X : Type } → VeriMonad M ⇒
N → MonadicSys M X → MonadicSys M X

flow Z f x = pure x

flow (S n) f x = f x >>= flow n f

Trivially, one has flow Z f = pure:

flowLemma1 : {M : Type → Type } → {X : Type } → VeriMonad M ⇒
(f : MonadicSys M X ) → ExtEq (flow Z f ) pure

flowLemma1 f x = Refl

and also flow (t + t ′) f x = flow t f x >>= flow t ′ f :

flowLemma2 : {M : Type → Type } → {X : Type } → {m,n : N} → VeriMonad M ⇒
(f : MonadicSys M X ) → ExtEq (flow (m + n) f ) (λx ⇒ flow m f x >>= flow n f )

flowLemma2 {m = Z } {n } f x =

(flow (Z + n) f x )

= {Refl } =

(flow n f x )

= {sym (leftIdentity (flow n f ) x )} =

(pure x >>= flow n f )

= {Refl } =

(flow Z f x >>= flow n f )

QED

flowLemma2 {m = S l } {n } f x =
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(flow (S l + n) f x )

= {Refl } =

(f x >>= flow (l + n) f )

= {bindPresExtEq (flow (l + n) f ) (λy ⇒ flow l f y >>= flow n f ) (flowLemma2 f ) (f x )} =

(f x >>= (λy ⇒ flow l f y >>= flow n f ))

= {sym (associativity (flow l f ) (flow n f ) (f x ))} =

((f x >>= flow l f )>>= flow n f )

= {Refl } =

(flow (S l) f x >>= flow n f )

QED

Every monadic system f : MonadicSys M X can be represented by an equivalent deterministic
systems on M X

repr : {M : Type → Type } → {X : Type } → VeriMonad M ⇒ MonadicSys M X → DetSys (M X )

repr f xs = xs >>= f

flowDetSys : {X : Type } → N → DetSys X → DetSys X
flowDetSys = Lecture5 .flow

reprLemma : {M : Type → Type } → {X : Type } → VeriMonad M ⇒
(n : N) → (f : MonadicSys M X ) →
ExtEq {A = M X } (>>=flow n f ) (flowDetSys n (repr f ))

reprLemma Z f mx =

(mx >>= flow Z f )

= {bindPresExtEq (flow Z f ) pure (flowLemma1 f ) mx } =

(mx >>= pure)

= {rightIdentity mx } =

(mx )

= {Refl } =

(flowDetSys Z (repr f ) mx )

QED

reprLemma (S m) f xs =

(xs >>= flow (S m) f )

= {bindPresExtEq (flow (S m) f ) (λx ⇒ f x >>= flow m f ) (λx ⇒ Refl) xs } =

(xs >>= (λx ⇒ f x >>= flow m f ))

= {sym (associativity f (flow m f ) xs)} =

((xs >>= f )>>= flow m f )

= {reprLemma m f (xs >>= f )} =

((flowDetSys m (repr f )) (xs >>= f ))
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= {Refl } =

((flowDetSys m (repr f )) ((repr f ) xs))

= {Refl } =

(flowDetSys (S m) (repr f ) xs)

QED

6.4.3 Trajectories

For a dynamical system f : MonadicSys M X , the trajectories of length n : N starting at x : X
are

trj : {M : Type → Type } → {X : Type } → VeriMonad M ⇒
(n : N) → MonadicSys M X → X → M (Vect (S n) X )

trj Z f x = map (x ::) (pure Nil)

trj (S n) f x = map (x ::) ((f x )>>= trj n f )

Remember that for deterministic systems the last state of the trajectory of length n starting in x
is flow n f x .

In the general, monadic case trj n f x is an M -structure of vectors. But mapping last on trj n f x
yields, again, flow n f :

flowTrjLemma : {M : Type → Type } → {X : Type } → VeriMonad M ⇒
(n : N) → (f : MonadicSys M X ) →
ExtEq (flow n f ) (map {a = Vect (S n) X } last ◦ (trj n f ))

To prove this result, we first derive the auxiliary lemma

mapLastLemma : {M : Type → Type } → {X : Type } → {n : N} → VeriMonad M ⇒
(x : X ) → ExtEq {A = M (Vect (S n) X )} (map last ◦map (x ::)) (map last)

mapLastLemma {X } {n } x mvs =

(map last (map (x ::) mvs))

= {sym (mapPresComp {A = Vect (S n) X } (x ::) last mvs)} =

(map (last ◦ (x ::)) mvs)

= {mapPresExtEq (last ◦ (x ::)) last (lastLemma x ) mvs } =

(map last mvs)

QED

And finally implement flowTrjLemma n f by induction on n:

flowTrjLemma {X } Z f x =

(flow Z f x )

= {Refl } =
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(pure x )

= {Refl } =

(pure (last (x :: Nil)))

= {sym (pureNatTrans last (x :: Nil))} =

(map last (pure (x :: Nil)))

= {cong {f = map last } (sym (pureNatTrans {A = Vect Z X } (x ::) Nil))} =

(map last (map (x ::) (pure Nil)))

= {Refl } =

(map last (trj Z f x ))

QED

flowTrjLemma (S m) f x =

(flow (S m) f x )

= {Refl } =

(f x >>= flow m f )

= {bindPresExtEq (flow m f ) (map last ◦ (trj m f )) (flowTrjLemma m f ) (f x )} =

(f x >>= map last ◦ (trj m f ))

= {sym (mapBindLemma last (trj m f ) (f x ))} =

(map last ((f x )>>= trj m f ))

= {sym (mapLastLemma x ((f x )>>= trj m f ))} =

(map last (map (x ::) ((f x )>>= trj m f )))

= {Refl } =

(map last (trj (S m) f x ))

QED

6.5 Time dependent dynamical system

In many important applications, one has to deal with dynamical systems in which X can be
different at different iteration steps.

For example, in lecture 1 we have sketched a sequential decision problem in which

• At the first decision step, the decision maker observes zero cumulated emissions, high current
emissions, unavailable technologies and a good world.

• ... if the cumulated emissions increase beyond a critical threshold, the probability that the
world becomes bad steeply increases.

This suggests that the set of values that cumulated emissions can take, i.e. the type of cumulated
emissions might change as the system evolves.
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For concreteness, assume that at each step the cumulated emissions can only increase by one. Let
e denote the cumulated emissions. Then we have the following situation

at step 0, | e ∈ {0} |
at step 1, | e ∈ {0, 1} |
at step n, | e ∈ {0 . .n } |

if cumulated emissions are a component of a type X that represents the set of observable states
of a system, then X will depend on an iteration counter. Formally

X : N → Type

A monadic dynamical system on X could then be specified in terms of a monad M

M : Type → Type

and of a transition function next

next : (t : N) → X t → M (X (S t))

Here the variable t denotes an iteration counter. In case X t entails a notion of time or, in other
words, if we have a function

time : {t : N} → X t → N

that associate a time to state values, we can formalize the idea that the system evolves forwards
(in time) by requiring

nextMonInc : (t , t ′ : N) → (x : X t) → (x ′ : X t ′) → t ‘LTE ‘ t ′ → time x ‘LTE ‘ time x ′

Similarly we can require a system to evolve backwards in time.

6.6 Decision making under uncertainty

In decision making problems, one has to do with systems whose evolution depends both on the
system’s state and on the options available to the decision maker.

In control theory, the options are called controls. They typically depend on the systems’s state
that is, the options available to the decision maker can be fifferent in different states.

Example: A central bank can typically increase or decrease the interest rates. But the amount
by which a central bank is able to do so, can depend on the current interest rates and perhaps
on other economic observables like for instance growth and unemployment or other measures and
indicators.

Example: A country might be able to increase or decrease the emissions of certain dangerous
pollutants. But the options available to decision makers might depend on the availability or non-
availability of effective filtering technologies, on the state of the economy or perhaps on the actual
level of pollutant.
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It is not difficult to modify the notion of a time-dependent monadic dynamical system to repre-
sent decision making problems. All we need to do is to introduce the notion of (possibly state-
dependent) controls

Y : (t : N) → X t → Type

The transition function of the system at step t will then depend both on the current state x : X t
and on the control y : Y t x selected

X : N → Type

Y : (t : N) → X t → Type

M : Type → Type

next : (t : N) → (x : X t) → Y t x → M (X (S t))

In decision making under uncertainty, X , Y , M and next are typically given and the problem is
that of finding sequences of controls such that the resulting trajectories fulfill certain conditions.

6.7 Coming up

In the next lecture we will start formalizing finite horizon sequential decision problems for the
deterministic case. These problems are at the core of dynamic programming as originally proposed
by Bellman in 1957 [1] and the first step towards optimal decision making under uncertainty.
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We go back to the deterministic case and first build a theory of optimal decision making for
deterministic sequential decision problems (SDP). In lecture 9 we will then generalize the theory
to monadic SDPs.

7.1 States, controls and transition function

At the core of an SDP we have a dynamical system with control as discussed in lecture 5:

X : (t : N) → Type

Y : (t : N) → (x : X t) → Type

next : (t : N) → (x : X t) → (y : Y t x ) → X (S t)

Remember that X t represents the set of states a decision maker can observe at decision step t .
For a given state x : X t , Y t x are the controls (options, choices, etc.) available to the decision
maker in x .

Remark: In order to specify an SDP, X , Y and next have to be defined.

Example: In an emission problem like the one discussed in the first lecture, X t represents the
cumulated emissions, the current emissions, the availability of technologies for reducing emissions
and the “state of the world”.

7.2 Reward functions

SDPs can be formulated is by introducing a reward function

Val : Type

reward : (t : N) → (x : X t) → (y : Y t x ) → (x ′ : X (S t)) → Val

that associates a unique value to every transition. Specifically, reward t x y x ′ represents the
reward (payoff, etc.) that the decision maker associates to a transition from x to x ′ when the
control y is selected.

Remark: In many SDPs, controls are associated with the consumption of resources that might
be scarce: money, fuel, common goods, etc.

Remark: In shortest path and optimal routing problems, rewards are often zero everywhere and
one for values of x ′ corresponding to the destination or goal.

Since the original work of Bellman [1], the above has turned out to be a useful approach for
formulating and solving SDPs. The idea is that the decision maker seeks controls that maximize
the sum of the rewards obtained in a finite number of steps. This implies that values of type Val
have to be ”addable”

(⊕) : Val → Val → Val

Moreover, Val has to be equipped with a ”zero”

zero : Val
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and with a binary ”comparison” relation

(6) : Val → Val → Type

Remark: In many SDPs, Val is N or R and (⊕) and zero are the standard addition and its
neutral element.

7.3 Policies and policy sequences

Policies are functions that associate to every state x : X t at decision step t a control in Y t x :

Policy : (t : N) → Type

Policy t = (x : X t) → Y t x

Policy sequences are literally sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where

Nil : {t : N} → PolicySeq t Z

(::) : {t ,n : N} → Policy t → PolicySeq (S t) n → PolicySeq t (S n)

The Nil data constructor warrants that we can construct an empty policy sequence for every
decision step; (::) warrants that with a decision policy for step t and a policy sequence that
supports n decision steps starting from states in X (S t), we can construct a policy sequence that
supports S n decision steps starting from states in X t .

Exercise 7.1. Assume that X t = R and Y t x = S for all t : N, x : X t = R. Formalize the
notions of policy and policy sequence for this special case.

7.4 The value of policy sequences

Given a policy sequence for n decision steps, we can easily compute the value of taking n decisions
according to that sequence in terms of the sum of the rewards obtained:

val : {t ,n : N} → PolicySeq t n → (x : X t) → Val

val {t } Nil x = zero

val {t } (p :: ps) x = let y = p x in

let x ′ = next t x y in

reward t x y x ′ ⊕ val ps x ′
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7.5 Optimality of policy sequences

Remember that the decision maker seeks controls that maximize the sum of the rewards obtained
in a finite number of decision steps.

Because val exactly computes this sum for arbitrary policy sequences, we can formalise what it
means for one such sequence to be optimal :

OptPolicySeq : {t ,n : N} → PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (ps ′ : PolicySeq t n) → (x : X t) → val ps ′ x 6 val ps x

Remark: This notion of optimality contains a quantification over all states x : X t . This implies
that a policy sequence which is worse (in terms of val) than another sequence in a particular state
cannot be optimal!

7.6 Optimal extensions of policy sequences

The computation of optimal extensions of policy sequences is the key for the computation of
optimal policy sequences.

An extension of a policy sequence for making m decision steps starting from states at decision
step S t is a policy for taking decisions at step t .

A policy p is an optimal extension of a policy sequence ps if there is no better way than p :: ps to
make S m decision steps starting from step t :

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t → Type

OptExt {t } ps p = (p′ : Policy t) → (x : X t) → val (p′ :: ps) x 6 val (p :: ps) x

The idea behind the notion of optimal extension is that if p is an optimal extension of ps and ps
is optimal, then p :: ps is optimal. This is Bellman’s principle of optimality.

7.7 Bellman’s principle

Bellman : {t ,m : N} →
(ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t) → OptExt ps p →
OptPolicySeq (p :: ps)

If 6 is reflexive and transitive and ⊕ is monotonic with respect to 6,

lteRefl : {a : Val } → a 6 a

lteTrans : {a, b, c : Val } → a 6 b → b 6 c → a 6 c

plusMon : {a, b, c, d : Val } → a 6 b → c 6 d → (a ⊕ c) 6 (b ⊕ d)
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then proving Bellman’s principle is straightforward:

Bellman {t } ps ops p oep = opps where

opps (p′ :: ps ′) x =

let y ′ = p′ x in

let x ′ = next t x y ′ in

let s1 = plusMon lteRefl (ops ps ′ x ′) in -- val (p′ :: ps ′) x 6 val (p′ :: ps) x

let s2 = oep p′ x in -- val (p′ :: ps) x 6 val (p :: ps) x

lteTrans s1 s2

7.8 Generic verified backwards induction

From the reflexivity of 6 it follows that empty policy sequences are optimal:

nilOptPolicySeq : OptPolicySeq Nil

nilOptPolicySeq Nil x = lteRefl

Thus, assuming that we have a method for computing optimal extensions of arbitrary policy
sequences:

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

it is easy to implement a generic backwards induction for computing optimal policies for arbitrary
decision problems:

bi : (t : N) → (n : N) → PolicySeq t n

bi t Z = Nil

bi t (S n) = let ps = bi (S t) n in optExt ps :: ps

and to prove that bi is correct:

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

biLemma t Z = nilOptPolicySeq

biLemma t (S n) = let ps = bi (S t) n in

let ops = biLemma (S t) n in

let p = optExt ps in

let oep = optExtSpec ps in

Bellman ps ops p oep
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7.9 Naive theory, wrap up

The theory is applied in three steps:

• First, specify a concrete SDP by implementing X , Y , next , Val , reward , ⊕, zero, 6 and
optExt .

• Then, apply bi t n and compute an optimal policy sequence [pt . . pt+n−1 ] for n > 0 decision
steps starting from step t .

• For an initial observation xt : X t , compute the n optimal controls:

yt = pt xt, xt+1 = next t xt yt

yt+1 = pt+1 xt+1, xt+2 = next (t + 1) xt+1 yt+1

...

yt+n−1 = pt+n−1 xt+n−1, xt+n = next (t + n − 1) xt+n−1 yt+n−1

• Bonus: If 6 is reflexive and transitive, ⊕ is monotonic with respect to 6 and optExt fulfills
optExtSpec then yt, yt+1 . . yt+n−1 are verified optimal decisions.

7.10 The bad news

The naive theory is simple and straightforward but has a major flaw.

What if Y t xt is empty? In this case, we cannot compute a yt : Y t xt and thus a next state!
There is so far nothing in our formulation that prevents the set of controls associated with a
certain state to be empty.

Conversely, there is nothing in the computation of optimal policies that prevents a policy to select
a control that through next leads to a state whose set of controls is empty.

As a result, we might not be able to “solve” even very simple decision problems. This is made
evident in the following example. Let

head : {t ,n : N} → PolicySeq t (S n) → Policy t

head (p :: ps) = p

tail : {t ,n : N} → PolicySeq t (S n) → PolicySeq (S t) n

tail (p :: ps) = ps

and

data GoodOrBad = Good | Bad

implementation Show GoodOrBad where

show Good = "Good"
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show Bad = "Bad"

data UpOrDown = Up | Down

Consider the decision problem

X t = GoodOrBad

Y t Good = UpOrDown

Y t Bad = Void

In Good there are two options: Up and Down. But in Bad there are no controls to select. We can
define a transition function

next t Good Up = Good

next t Good Down = Bad

next t Bad v impossible

but we will not be able to apply next for the Bad case unless we manage to construct a value
v : Void . This is impossible. Still, we can complete the specification of the problem:

Val = N
(⊕) = (+)

zero = Z

(6) = Prelude.N.LTE

reward t Good Up x ′ = 1

reward t Good Down x ′ = 3

reward t Bad v x ′ impossible

Notice that, again, we will not be able to compute an argument v : Void to apply reward . This
also implies that we cannot give a complete implementation of optExt . We can compute a best
control for Good :

optExt {t } ps Good =

let x ′Up = next t Good Up in

let x ′Down = next t Good Down in

let valUp = reward t Good Up x ′Up ⊕ val ps x ′Up in

let valDown = reward t Good Down x ′Down ⊕ val ps x ′Down in

if valUp > valDown then Up else Down

But not for Bad :

optExt {t } ps Bad = ? whatNow

In spite of this, we can try to compute a policy sequence for two decision steps and see what
happens:
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computation : IO ()

computation = let ps = bi 0 2 in

let x 0 = Good in

let p0 = head ps in

let y0 = p0 x 0 in

let x 1 = next Z x 0 y0 in

let p1 = head (tail ps) in

let y1 = p1 x 1 in

let x 2 = next 1 x 1 y1 in

do putStrLn ("x0 = " ++ show x 0)

putStrLn ("x1 = " ++ show x 1)

putStrLn ("x2 = " ++ show x 2)

main : IO ()

main = computation

Exercise 7.2. Do you expect this program to terminate? If so, what do you expect to be the
result of the computation?

7.11 Wrap-up, outlook

• If the control space for one or more states is empty, the theory becomes problematic. We
can proceed in two ways:

• Require Y t x to be non-empty for all t : N, x : X t .

• Accept that Y t x might be empty and be more careful in the definition of the domain and
of the codomain of policies.

• The second approach is the one adopted in [4], [3] and [2]. We discuss it in the next lecture.

Additional remarks: trajectories and consistency of val

We want to show that val ps x does indeed compute the sum of the rewards obtained along the
trajectory that is obtained under the policy sequence ps when starting in x . To this end, we start
by defining sequences of state-control pairs

data StateCtrlSeq : (t : N) → (n : N) → Type where

Last : {t : N} → (x : X t) → StateCtrlSeq t (S Z )
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(:::) : {t ,n : N} → Σ (X t) (Y t) → StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

and a function sumR that computes the sum of the rewards of a state-control sequence:

head ′ : {t ,n : N} → StateCtrlSeq t (S n) → X t

head ′ (Last x ) = x

head ′ (MkSigma x y ::: xys) = x

sumR : {t ,n : N} → StateCtrlSeq t n → Val

sumR {t } {n = S Z } (Last x ) = zero

sumR {t } {n = S (S m)} (MkSigma x y ::: xys) = reward t x y (head ′ xys)⊕ sumR xys

Next, we implement a function that computes the trajectory that is obtained under a policy
sequence ps when starting in x :

trj : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → StateCtrlSeq t (S n)

trj {t } Nil x = Last x

trj {t } (p :: ps) x = let y = p x in

let x ′ = next t x y in

(MkSigma x y) ::: trj ps x ′

Finally, we compute the measure of the sum of the rewards obtained along the trajectory that is
obtained under the policy sequence ps when starting in x

val ′ : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → Val

val ′ ps x = sumR (trj ps x )

Now we can formulate the property that val ps does indeed compute the measure of the sum of
the rewards obtained along the trajectories obtained under the policy sequence ps:

valVal ′Th : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → val ps x = val ′ ps x

With

head ′Lemma : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → head ′ (trj ps x ) = x

head ′Lemma Nil x = Refl

head ′Lemma (p :: ps) x = Refl

we can prove the val -val ′ theorem by induction on ps:

valVal ′Th : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → val ps x = val ′ ps x

valVal ′Th Nil x = Refl

valVal ′Th {t } (p :: ps) x =

let y = p x in

let x ′ = next t x y in

(val (p :: ps) x )
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= {Refl } =

(reward t x y x ′ ⊕ val ps x ′)

= {cong (valVal ′Th ps x ′)} =

(reward t x y x ′ ⊕ val ′ ps x ′)

= {cong {f = λα⇒ reward t x y α⊕ val ′ ps x ′} (sym (head ′Lemma ps x ′))} =

(reward t x y (head ′ (trj ps x ′))⊕ val ′ ps x ′)

= {Refl } =

(sumR ((MkSigma x y) ::: trj ps x ′))

= {Refl } =

(val ′ (p :: ps) x )

QED

Solutions

Exercise 7.1:

Policy : Type

Policy = R → S

PolicySeq : N → Type

PolicySeq n = Vect n Policy
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Objectives of this lecture

• Get acquainted with the notions of viability and reachability

• Use these notions to revisit and improve the notion of policy sequence

• Adapt the notion of optimality and the generic backward induction to the improved theory

• Revisit the problematic example from the last lecture within the new setting

Consider an SDP as in the following sketch

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

Here, the state space at decision steps 0, 1, 2, 4, 5 and for t > 7 consists of the cells a, b, c, d and e.

But at decision steps 3 and 6, the black cells do not belong to the state space space: X 3 = {e }
and X 6 = {a, b, c}.

Further, the controls available to the decision maker only support moving to a adjacent cells.

For example, at decision step 0, the decision maker can move from cell a to cell a or b; from b,
she can move to a, b or c. And so on.

The set of controls in cells a, b and c at decision step 2 is empty: Y 2 a = Y 2 b = Y 2 c = { }.
The controls in d and e admit transitions to the only cell contained in X 3, namely e.

Similarly, the set of controls for cell e at decision step 5 is empty and from d one can only move to c.
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On the left of the figure you can see a trajectory compatible with these assumptions in red.

In the middle of the figure, the cells from which less than three decision steps can be done are
flagged in light red: in particular, no steps can be done starting from cells a, b and c at t = 2 and
from cell e at t = 5. Only one step can be done starting from cells a and b at t = 1 and two steps
can be done from cell a at t = 0.

On the right of the figure, the cells that cannot be reached no matter what the initial cell at step
0 is and which controls are selected are greyed.

8.1 Viability

In lecture 7 we have specified an SDP in terms of

X : (t : N) → Type

Y : (t : N) → (x : X t) → Type

next : (t : N) → (x : X t) → (y : Y t x ) → X (S t)

Val : Type

reward : (t : N) → (x : X t) → (y : Y t x ) → (x ′ : X (S t)) → Val

(⊕) : Val → Val → Val

zero : Val

(6) : Val → Val → Type

lteRefl : {a : Val } → a 6 a

lteTrans : {a, b, c : Val } → a 6 b → b 6 c → a 6 c

plusMon : {a, b, c, d : Val } → a 6 b → c 6 d → (a ⊕ c) 6 (b ⊕ d)

The picture makes very clear that, if we allow Y t x to be empty for certain states x : X t , we
need to be careful in the definition of the domain and of the codomain of policy functions.

For instance cell a cannot be in the domain of a policy for taking decisions at step 0 that is the
head of a policy sequence of length greater than or equal to three!

Conversely, a policy that supports taking more than 2 decision steps cannot select a control in cell
b (c) at step 0 that leads to cell a (b) at step one!

We can account for these constraints in a simple and general way by introducing the notion of
viability.

Informally, a state x : X t is viable for n steps if one can make n decision steps starting from x .
We can formalize this idea in terms of a Viable n x type:

Viable : {t : N} → (n : N) → X t → Type

We know from lecture 7 that we have to refine the notion of policy. At the same time, we do not
want to impose unnecessary restrictions on the range of SDPs to which the theory can be applied.
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This suggests that we should probably avoid defining Viable and instead specify minimal properties
that problem-specific implementations need to fulfil.

One property of Viable is rather obvious: every state should be viable for zero steps. Thus

viableSpec0 : {t : N} → (x : X t) → Viable Z x

We want to formalize the intuition that if one can take n + 1 decision steps starting from a state
x , then x must admit a control that leads to a next state from which at least n further steps can
be done. That is, to a next state that is viable for n steps:

viableSpec1 : {t : N} → {n : N} → (x : X t) →
Viable (S n) x → Exists (λy ⇒ Viable n (next t x y))

The third and last requirement that we impose is the converse: if a state admits a control which
is good for n steps, that state is viable for n + 1 steps:

viableSpec2 : {t : N} → {n : N} → (x : X t) →
Exists (λy ⇒ Viable n (next t x y)) → Viable (S n) x

Exercise 8.1. Give a generic implementation of Viable and prove that it fulfills ViableSpec0 ,
ViableSpec1 and ViableSpec2 .

Exercise 8.1:

Viable {t } Z x = Unit

Viable {t } (S n) x = Exists (λy ⇒ Viable n (next t x y))

viableSpec0 {t } x = ()

viableSpec1 {t } {n } x (Evidence y gy) = Evidence y gy

viableSpec2 {t } {n } x (Evidence y gy) = Evidence y gy

8.2 Reachability

In the SDP sketched in the figure, the gray cells on the right cannot be reached from any initial
cell, no matter which controls are selected.

Including these states in the domain of policies is not logically problematic but potentially very
inefficient.
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In concrete SDPs, it is not uncommon that a large number of states in X t are actually unreachable
for large t .

Computing optimal controls for these states would be an unnecessary waste of resources.

We can avoid this by restricting the domain of policies of type Policy t to values in X t that are
actually reachable.

To this end, we need to formalize the notion of reachability. We proceed in the same way as for
viability. Instead of defining the notion of reachability, we specify it.

Client applications will be able to take advantage of the knowledge about the specific SDP at
stake to provide efficient implementations of Reachable:

Reachable : {t ′ : N} → X t ′ → Type

reachableSpec0 : (x : X Z ) → Reachable x

reachableSpec1 : {t : N} → (x : X t) → Reachable x → (y : Y t x ) →

Reachable (next t x y)

The type of reachableSpec0 encodes the idea that every initial state is reachable.

The type of reachableSpec1 formalizes the idea that if x : X t is reachable, every y : Y t x
implies that next z x y is also reachable.

We also want to encode the idea that if x ′ : X (t + 1) is reachable, then there must exist a state
x : X t that is reachable and a control y : Y t x that allows a transition from x to x ′.

Exercise 8.2. Encode this idea in the type of a reachableSpec2 value. Suggestion: first, formalize
what it means for a state x : X t to be a predecessor of a state x ′ : X (S t) by implementing

Pred : {t : N} → X t → X (S t) → Type

Then refine this notion: define what it means for a state x : X t to be a reachable predecessor of
a state x ′ : X (S t) by implementing

ReachablePred : {t : N} → X t → X (S t) → Type

Finally, give the type of reachableSpec2 .

Exercise 8.2:

Pred {t } x x ′ = Exists (λy ⇒ x ′ = next t x y)
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ReachablePred x x ′ = (Reachable x , x ‘Pred ‘ x ′)

reachableSpec2 : {t : N} → (x ′ : X (S t)) → Reachable x ′ → Exists (λx ⇒ x ‘ReachablePred ‘ x ′)

Exercise 8.3. Give a generic default implementation of Reachable and prove that it fulfills
reachableSpec0 , reachableSpec1 and reachable2 .

Exercise 8.3:

Reachable {t ′ = Z } x ′ = Unit

Reachable {t ′ = S t } x ′ = Exists (λx ⇒ ReachablePred x x ′)

reachableSpec0 x = ()

reachableSpec1 x rx y = Evidence x (rx ,Evidence y Refl)

reachableSpec2 {t } x ′ rx ′ = rx ′

8.3 Policies and policy sequences revisited

We are now ready to refine the notion of policy to avoid the difficulties discussed in lecture 7.
Recall that there we defined

Policy : (t : N) → Type

Policy t = (x : X t) → Y t x

and then realized that a policy which does not support n decision steps cannot be the first element
of a policy sequence of length n.

We encode the idea that a policy at decision step t might only support a finite number n of
decision steps with an additional parameter:

Policy : (t : N) → (n : N) → Type

For n = Z (zero decison steps) we do not actually need any rule and we can define Policy t Z to
be the sigleton type:

Policy t Z = Unit
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For n = S m we want to express the idea that a value of type Policy t n is a decision rule which
associates to each state in x : X t that is reachable and viable for n steps a good control in Y t x .

A good control in Y t x is just a y : Y t x paired with a proof that y is good:

GoodY : (t : N) → (x : X t) → (m : N) → Type

GoodY t x m = Σ (Y t x ) (λy ⇒ Viable m (next t x y))

With a notion of good controls in place, we can define what a policy that supports n = S m
decision steps is. Wrapping up:

Policy t Z = Unit

Policy t (S m) = (x : X t) → Reachable x → Viable (S m) x → GoodY t x m

Policy sequences are, as in lecture 7, sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where

Nil : {t : N} → PolicySeq t Z

(::) : {t ,n : N} → Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

Remark: Notice the t (S n), (S t) n, t (S n) pattern in the Cons constructor of policy sequences.

8.4 The value of policy sequences

The computation of val is essentially as in lecture 7

val : {t ,n : N} → PolicySeq t n → (x : X t) → Val

val {t } Nil x = zero

val {t } (p :: ps) x = let y = p x in

let x ′ = next t x y in

reward t x y x ′ ⊕ val ps x ′

but there is a twist. The policy p can only be applied to states in X t that are reachable and
viable and computes not just a control but a good control!

This is crucial because, in order to compute the value of the tail ps in x ′ = next t x y , we have to
provide evidence that x ′ is reachable and viable!

The definition of val accounts for the fact that we have carefully restricted both the domain and
the codomain of policies.

val : {t ,n : N} → PolicySeq t n → (x : X t) → Reachable x → Viable n x → Val

val {t } Nil x rx vx = zero

val {t } (p :: ps) x rx vx = let gy = p x rx vx in
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let y = outl gy in

let x ′ = next t x y in

let rx ′ = reachableSpec1 x rx y in -- ?hole1

let vx ′ = outr gy in -- ?hole2

reward t x y x ′ ⊕ val ps x ′ rx ′ vx ′

In the definition of val , we have used the helper function outl . outl and its counterpart outr are
just the projections for existential types: Σ, Exists, etc.

outl : {A : Type } → {P : A → Type } → Σ A P → A

outl (MkSigma a ) = a

outr : {A : Type } → {P : A → Type } → (s : Σ A P) → P (outl s)

outr (MkSigma p) = p

Exercise 8.4. In the definition of val we have two holes left: hole1 and hole2 . Fill in these holes
and complete the implementation of val . Suggestion: recall the specification of Reachable and the
definition of good controls.

8.5 Optimality, optimal extensions, Bellman’s principle

The notions of optimality of policy sequences, of optimal extension of policy sequences and Bell-
man’s principle are, mutatis mutandis, the same as in lecture 7:

OptPolicySeq : {t ,n : N} → PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (ps ′ : PolicySeq t n) →
(x : X t) → (rx : Reachable x ) → (vx : Viable n x ) →
val ps ′ x rx vx 6 val ps x rx vx

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t (S m) → Type

OptExt {t } {m } ps p = (p′ : Policy t (S m)) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S m) x ) →
val (p′ :: ps) x rx vx 6 val (p :: ps) x rx vx

Bellman : {t ,m : N} →
(ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t (S m)) → OptExt ps p →
OptPolicySeq (p :: ps)
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Proving Bellman’s principle carries over from lecture 7:

Bellman {t } {m } ps ops p oep = opps where

opps (p′ :: ps ′) x rx vx =

let gy ′ = p′ x rx vx in

let y ′ = outl gy ′ in

let x ′ = next t x y ′ in

let rx ′ = reachableSpec1 x rx y ′ in

let vx ′ = outr gy ′ in

let s1 = plusMon lteRefl (ops ps ′ x ′ rx ′ vx ′) in

let s2 = oep p′ x rx vx in

lteTrans s1 s2

8.6 Generic verified backwards induction

Apart from the additional index in the type of policies, this part of the theory is unchanged from
lecture 7:

nilOptPolicySeq : OptPolicySeq Nil

nilOptPolicySeq Nil x rx vx = lteRefl

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t (S n)

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

bi : (t : N) → (n : N) → PolicySeq t n

bi t Z = Nil

bi t (S n) = let ps = bi (S t) n in optExt ps :: ps

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

biLemma t Z = nilOptPolicySeq

biLemma t (S n) = let ps = bi (S t) n in

let ops = biLemma (S t) n in

let p = optExt ps in

let oep = optExtSpec ps in

Bellman ps ops p oep
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8.7 What have we gained?

Let’s consider again the example from lecture 7:

head : {t ,n : N} → PolicySeq t (S n) → Policy t (S n)

head (p :: ps) = p

tail : {t ,n : N} → PolicySeq t (S n) → PolicySeq (S t) n

tail (p :: ps) = ps

data GoodOrBad = Good | Bad

implementation Show GoodOrBad where

show Good = "Good"

show Bad = "Bad"

data UpOrDown = Up | Down

X t = GoodOrBad

Y t Good = UpOrDown

Y t Bad = Void

next t Good Up = Good

next t Good Down = Bad

next t Bad v impossible

Val = N
(⊕) = (+)

zero = Z

(6) = Prelude.N.LTE

reward t Good Up x ′ = 1

reward t Good Down x ′ = 3

reward t Bad v x ′ impossible

Notice that, as in lecture 7, we will not be able to compute an argument v : Void to apply reward .

Remember that policies are now parameterized on two natural numbers: t and n. The second one
characterizes how many decision steps the policy does support.

In implementing optExt , we have to distinguish between policy extensions of policy sequences of
length zero and policy extensions of sequences of length greater or equal to one.
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In the first case we can select both Up and Down because, even though the second control implies
a transition to Bad (remember that the control set of Bad is void!), no further decision steps are
required from there:

optExt {t } {n = Z } ps Good rGood vGood =

let x1 ′ = next t Good Up in

let rx1 ′ = reachableSpec1 Good rGood Up in

let vx1 ′ = viableSpec0 {t = S t } x1 ′ in

let x2 ′ = next t Good Down in

let rx2 ′ = reachableSpec1 Good rGood Down in

let vx2 ′ = viableSpec0 {t = S t } x2 ′ in

let valUp = reward t Good Up (next t Good Up )⊕ val ps x1 ′ rx1 ′ vx1 ′ in

let valDown = reward t Good Down (next t Good Down)⊕ val ps x2 ′ rx2 ′ vx2 ′ in

if valUp > valDown then (MkSigma Up ()) else (MkSigma Down ())

optExt {t } {n = Z } ps Bad rBad (Evidence v ) = absurd v

Exercise 8.5. Notice that, in contrast to lecture 7, we can now give a complete implementation
of the (absurd) Bad case. Do you see why v is absurd?

In the second case, we know that only one control supports a transition to a next state from which
further decision steps are doable. Thus, we just pick up this control:

optExt {t } {n = S m } ps Good rGood vGood =

let ey = viableSpec1 {t = t } {n = S m } Good vGood in

MkSigma (getWitness ey) (getProof ey)

optExt {t } {n = S m } ps Bad rBad (Evidence v ) = absurd v

We can now implement the same computation as in lecture 7. In contrast to lecture 7, however
we have to provide (compute, construct) evidences that our initial state x 0 = Good is reachable
and viable for two steps!

computation : IO ()

computation = let ps = bi 0 2 in

let x 0 = Good in

let rx0 = () in

let vx0 = Evidence Up (Evidence Up ()) in

let p0 = head ps in

let gy0 = p0 x 0 rx0 vx0 in

let y0 = outl gy0 in
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let x 1 = next Z x 0 y0 in

let rx1 = reachableSpec1 {t = 0} x 0 rx0 y0 in

let vx1 = outr gy0 in

let p1 = head (tail ps) in

let gy1 = p1 x 1 rx1 vx1 in

let y1 = outl gy1 in

let x 2 = next 1 x 1 y1 in

do putStrLn ("x0 = " ++ show x 0)

putStrLn ("x1 = " ++ show x 1)

putStrLn ("x2 = " ++ show x 2)

Exercise 8.6. Comment the single steps of the implementation of computation.

main : IO ()

main = computation

Exercise 8.7. Do you expect this program to terminate? If so, what do you expect to be the
result of the computation? Run main from the terminal. Do you obtain the expected result?

8.8 Wrap-up, outlook

• We have managed to fix a deficiency of the naive theory from lecture 7.

• The new theory requires stronger guarantees from the initial states.

• Attempts at computing n optimal decisions starting from states that support less than n
decision steps are detected at compile time.

• We still face a major problem, however: fulfilling optExtSpec for problem-specific implemen-
tations of optExt like the ones discussed here and in lecture 7 is difficult and time consuming!

• What we need is a generic implementation of optExt .

• And, in order to apply the theory to decision problems under uncertainty and imperfect
information, we need to extend it to monadic SDPs.
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Solutions

Exercise 8.4:

rx ′ = reachableSpec1 x rx y

vx ′ = outr gy
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9.1 Wrap up lecture 8, part 1

In lecture 8 we have demonstrated that if we specify a SDP in terms of

X : (t : N) → Type

Y : (t : N) → (x : X t) → Type

next : (t : N) → (x : X t) → (y : Y t x ) → X (S t)

Val : Type

reward : (t : N) → (x : X t) → (y : Y t x ) → (x ′ : X (S t)) → Val

(⊕) : Val → Val → Val

zero : Val

(6) : Val → Val → Type

such that

lteRefl : {a : Val } → a 6 a

lteTrans : {a, b, c : Val } → a 6 b → b 6 c → a 6 c

plusMon : {a, b, c, d : Val } → a 6 b → c 6 d → (a ⊕ c) 6 (b ⊕ d)

and if we can define

Viable : {t : N} → (n : N) → X t → Type

Reachable : {t ′ : N} → X t ′ → Type

such that

viableSpec0 : {t : N} → (x : X t) → Viable Z x

viableSpec1 : {t : N} → {n : N} → (x : X t) →
Viable (S n) x → Exists (λy ⇒ Viable n (next t x y))

viableSpec2 : {t : N} → {n : N} → (x : X t) →
Exists (λy ⇒ Viable n (next t x y)) → Viable (S n) x

and

reachableSpec0 : (x : X Z ) → Reachable x

reachableSpec1 : {t : N} → (x : X t) → Reachable x → (y : Y t x ) → Reachable (next t x y)

Pred : {t : N} → X t → X (S t) → Type

Pred {t } x x ′ = Exists (λy ⇒ x ′ = next t x y)
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ReachablePred : {t : N} → X t → X (S t) → Type

ReachablePred x x ′ = (Reachable x , x ‘Pred ‘ x ′)

reachableSpec2 : {t : N} → (x ′ : X (S t)) → Reachable x ′ → Exists (λx ⇒ x ‘ReachablePred ‘ x ′)

hold, then, if we can implement a function that computes optimal extensions of arbitrary policy
sequences

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t (S n)

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

we can implement a generic backwards induction

bi : (t : N) → (n : N) → PolicySeq t n

that is correct by construction, i.e. for which we can prove

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

We have derived this result in a context. This is given by the notions:

GoodY : (t : N) → (x : X t) → (m : N) → Type

GoodY t x m = Σ (Y t x ) (λy ⇒ Viable m (next t x y))

Policy : (t : N) → (n : N) → Type

Policy t Z = Unit

Policy t (S m) = (x : X t) → Reachable x → Viable (S m) x → GoodY t x m

data PolicySeq : (t : N) → (n : N) → Type where

Nil : {t : N} → PolicySeq t Z

(::) : {t ,n : N} → Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

val : {t ,n : N} → PolicySeq t n → (x : X t) → Reachable x → Viable n x → Val

val {t } Nil x rx vx = zero

val {t } (p :: ps) x rx vx = let gy = p x rx vx in

let y = outl gy in

let x ′ = next t x y in

let rx ′ = reachableSpec1 x rx y in -- ?hole1

let vx ′ = outr gy in -- ?hole2

reward t x y x ′ ⊕ val ps x ′ rx ′ vx ′
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OptPolicySeq : {t ,n : N} → PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (ps ′ : PolicySeq t n) →
(x : X t) → (rx : Reachable x ) → (vx : Viable n x ) →
val ps ′ x rx vx 6 val ps x rx vx

and

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t (S m) → Type

OptExt {t } {m } ps p = (p′ : Policy t (S m)) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S m) x ) →
val (p′ :: ps) x rx vx 6 val (p :: ps) x rx vx

9.2 Wrap up lecture 8, part 2

In lecture 8, we have also shown that it is not difficult to give generic and correct implementations
of Viable and Reachable:

Viable {t } Z x = Unit

Viable {t } (S n) x = Exists (λy ⇒ Viable n (next t x y))

viableSpec0 {t } x = ()

viableSpec1 {t } {n } x (Evidence y gy) = Evidence y gy

viableSpec2 {t } {n } x (Evidence y gy) = Evidence y gy

Reachable {t ′ = Z } x ′ = Unit

Reachable {t ′ = S t } x ′ = Exists (λx ⇒ ReachablePred x x ′)

reachableSpec0 x = ()

reachableSpec1 x rx y = Evidence x (rx ,Evidence y Refl)

reachableSpec2 {t } x ′ rx ′ = rx ′

However, we have implemented optExt only for a specific (and quite simple) SDP and we have
argued that showing that this implementation is correct (by implementing optExtSpec) would not
be trivial.

The first objective of this lecture is to derive a generic, correct implementation of optExt .

To this end, we start by reminding ourselves of what it means to compute optimal extensions of
policy sequences.
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9.3 Generic, correct optimal extensions

Consider again the specification

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t (S n)

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

The signature of optExt tells us that, for arbitrary t ,n : N and ps : PolicySeq (S t) n, p =
optExt ps has to be a policy for selecting controls at decision step t and that the controls selected
by p have to support n further decision steps. Thus, because of the definition of Policy

Policy : (t : N) → (n : N) → Type

Policy t Z = Unit

Policy t (S m) = (x : X t) → Reachable x → Viable (S m) x → GoodY t x m

we also know that p has to associate a good control to every state x : X t which is reachable and
viable for n + 1 steps. This is a control y : Y t x paired with a proof that next t x y is viable n
steps:

GoodY : (t : N) → (x : X t) → (m : N) → Type

GoodY t x m = Σ (Y t x ) (λy ⇒ Viable m (next t x y))

Exercise 9.1. We know for sure that at least one such control exists. Do you see why?

Thus, if Y t x happens to contain only one control (Y t x is a singleton type), we can define

p x r v = gy

where, neglecting the differences between Exists and Σ, gy is just viableSpec1 x v ! What if Y t x
contains more than one control?

In this case, we truly have to make a choice. The second part of the specification of optExt

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

tells us that p = optExt ps has to be an optimal extension of ps. The definitions of OptExt

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t (S m) → Type

OptExt {t } {m } ps p = (p′ : Policy t (S m)) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S m) x ) →
val (p′ :: ps) x rx vx 6 val (p :: ps) x rx vx

and of val

TiPES Deliverable D6.1 

 

 

 Page 
115 

 
  

  



val : {t ,n : N} → PolicySeq t n → (x : X t) → Reachable x → Viable n x → Val

val {t } Nil x rx vx = zero

val {t } (p :: ps) x rx vx = let gy = p x rx vx in

let y = outl gy in

let x ′ = next t x y in

let rx ′ = reachableSpec1 x rx y in

let vx ′ = outr gy in

reward t x y x ′ ⊕ val ps x ′ rx ′ vx ′

suggest that p x r v has to be a pair consisting of a control y : Y t x and of a proof that
x ′ = next t x y is viable m steps such that

Condition: y maximises the sum of the current reward, reward t x y x ′, and of the value
val ps x ′ rx ′ vx ′ of taking m further decision steps with ps.

We can see that this intuition is correct in three steps. First, we rewrite val in terms of a helper
function cval :

mutual

cval : {t ,m : N} → PolicySeq (S t) m →
(x : X t) → Reachable x → Viable (S m) x → GoodY t x m → Val

cval {t } ps x rx vx gy = let y = outl gy in

let x ′ = next t x y in

let rx ′ = reachableSpec1 x rx y in

let vx ′ = outr gy in

reward t x y x ′ ⊕ val ps x ′ rx ′ vx ′

val : {t ,n : N} → PolicySeq t n → (x : X t) → Reachable x → Viable n x → Val

val {t } Nil x rx vx = zero

val {t } (p :: ps) x rx vx = let gy = p x rx vx in

cval ps x rx vx gy

The interpretation of cval ps x rx vx gy is clear: it is the value (as always, in terms of sum of
rewards) of selecting the (good) control gy at decision step t and then making m further decision
steps according to the policy sequence ps.

Second, we assume that we can implement functions

cvalargmax : {t ,n : N} → PolicySeq (S t) n →
(x : X t) → Reachable x → Viable (S n) x → GoodY t x n

cvalmax : {t ,n : N} → PolicySeq (S t) n →
(x : X t) → Reachable x → Viable (S n) x → Val

that fulfills the specification
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cvalargmaxSpec : {t ,n : N} → (ps : PolicySeq (S t) n) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S n) x ) →
cvalmax ps x rx vx = cval ps x rx vx (cvalargmax ps x rx vx )

cvalmaxSpec : {t ,n : N} → (ps : PolicySeq (S t) n) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S n) x ) →
(y : GoodY t x n) → (cval ps x rx vx y) 6 (cvalmax ps x rx vx )

In other words, cvalargmax computes a good control that maximizes cval . The first specification
ensures that cvalmax is indeed the value of cval for that control. The second specification ensures
that no value of cval is better than cvalmax .

Third, we show that under these assumption we can derive a correct, generic implementation of
optExt that is, an imlementation that fulfils

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t (S n)

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

with

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t (S m) → Type

OptExt {t } {m } ps p = (p′ : Policy t (S m)) →
(x : X t) → (rx : Reachable x ) → (vx : Viable (S m) x ) →
val (p′ :: ps) x rx vx 6 val (p :: ps) x rx vx

This is done as follows:

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t (S n)

optExt {t } {n } ps = p where

p : Policy t (S n)

p x rx vx = cvalargmax ps x rx vx

optExtLemma : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

optExtLemma {t } {n } ps p′ x rx vx = s4 where

p : Policy t (S n)

p = optExt ps

gy : GoodY t x n

gy = p x rx vx

y : Y t x

y = outl gy

gy ′ : GoodY t x n

gy ′ = p′ x rx vx
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y ′ : Y t x

y ′ = outl gy ′

s1 : cval ps x rx vx gy ′ 6 cvalmax ps x rx vx

s1 = cvalmaxSpec ps x rx vx gy ′

s2 : cval ps x rx vx gy ′ 6 cval ps x rx vx (cvalargmax ps x rx vx )

s2 = replace {P = λz ⇒ (cval ps x rx vx gy ′ 6 z )} (cvalargmaxSpec ps x rx vx ) s1

-- the next steps are for the (sort of) human reader

s3 : cval ps x rx vx gy ′ 6 cval ps x rx vx gy

s3 = s2

s4 : val (p′ :: ps) x rx vx 6 val (p :: ps) x rx vx

s4 = s3

This completes the derivation of a generic, correct implementation of optExt but raises one im-
portant question.

Question: Can we compute good controls that maximize cval that is, provide correct implemen-
tations of cvalargmax and cvalmax? Under which conditions?

Exercise 9.2. Answer the above questions. What does it mean for cvalargmax and cvalmax to
be correct? Could one establish the correctness of a given implementation by means of tests?

There is no provably correct generic method for solving arbitrary optimization problems.

But it is easy to find a best (good) control for a given (reachable and viable) x : X t when set of
controls Y t x is finite.

The case in which a decision maker has to select one of a finite set of options is particularly
important in practice.

Formalizing the notion of finiteness for a type and deriving correct implementations of cvalargmax
and cvalmax for the finite case would go beyond the scope of these lectures.

But IdrisLibs [1] provides default implementations for this important case. To take advantage of
these implementations, practitioners only need to provide a proof that Y t x is finite for every
x : X t at every decision step t .

9.4 Viability and reachability decision procedures

In the example discussed at the end of lecture 8, we have computed two decision steps for a simple
SDP. The computation entailed, among others, steps like

computation = let ps = bi 0 2 in

let x 0 = Good in

let rx0 = () in
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let vx0 = Evidence Up (Evidence Up ()) in

...

do putStrLn ("x0 = " ++ show x 0)

putStrLn ("x1 = " ++ show x 1)

putStrLn ("x2 = " ++ show x 2)

In these steps, we have taken advantage of our understanding of the specific problem (and of the
fact that the problem is very simple) to compute an evidence vx0 that the initial state x 0 = Good
is viable for two decision steps.

In the computation, a proof that x 0 is viable for two decision steps is mandatory to apply the first
policy of ps to x 0 and thus compute an optimal control for the first decision step.

In general and for more realistic problems, proving the viability of an initial state for a sufficiently
large number of decision steps might be difficult or simply impossible.

In the specific example, we would not have been able to construct any evidence of viability for
more than zero decision steps if we had chosen x 0 = Bad .

In realistic applications (for instance, in a tool that supports the computation of optimal policies
during negotiations on matter of GHG emissions) a decision maker might want to compute optimal
policies for different initial states.

These observations suggest that, in order to apply the theory to realistic SDPs, it would be useful
to have decision procedures for Viable and Reachable.

Question: What is a decision procedure?

A decision procedure for a property P : A → Type of values of type A is a function that
associates to every a : A either a value of type P a or a value of type Not (P a).

A property P : A → Type which has a decision procedure is called decidable. The Idris prelude
defines a data type

data Dec : Type → Type where

Yes : (prf : prop) → Dec prop

No : (contra : prop → Void) → Dec prop

to characterize decidable properties. If P : Type is decidable, we can easily implement a decision
procedure for any value of type P :

dec : {P : Type } → Dec P → Either P (Not P)

dec (Yes prf ) = Left prf

dec (No contra) = Right contra

We can use Dec to formalize the notion of decidability for viability:

decidableViable : {t : N} → (n : N) → (x : X t) → Dec (Viable n x )

and take advantage of decidableViable to implement a viability test inside computation:

computation =
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do x 0 ← pure Good

putStrLn ("x0 = " ++ show x 0)

case (decidableViable {t = Z } 2 x 0) of

(Yes prf ) ⇒ let ps = bi 0 2 in

let rx0 = () in

let vx0 = prf in

...

do putStrLn ("x0 = " ++ show x 0)

putStrLn ("x1 = " ++ show x 1)

putStrLn ("x2 = " ++ show x 2)

(No contra)⇒ do putStrLn ("x0 not viable for 2 decision steps")

A viability test is a necessary condition for computing optimal policy sequences of a length n for
initial states that are selected at run time and that may or may not be actually viable for n steps.

9.5 Wrap-up, outlook

• We have obtained a generic implementation of optExt .

• We have seen how to take advantage of viability decision procedures for run-time tests.

• In the next lecture we will extend the theory to monadic SDPs.

Solutions

Exercise 9.1:

It is because of

viableSpec1 : {t : N} → {n : N} → (x : X t) →
Viable (S n) x → Exists (λy ⇒ Viable n (next t x y))

Since

Policy t (S n) = (x : X t) → Reachable x → Viable (S n) x → GoodY t x n

we know that x is viable S n steps (we have a value of type Viable (S n) x ) every time we have
to compute a good control for that x .

References

[1] Nicola Botta. IdrisLibs. https://gitlab.pik-potsdam.de/botta/IdrisLibs, 2016–2018.
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In this lecture we extend the naive theory of deterministic sequential decision problems of lecture
7 to monadic SDPs. As a first step, we account for a problem’s uncertainties. As we have seen in
lecture 6, this can be done in terms of a type constructor M which has the structure of a monad :

M : Type → Type

10.1 States, controls, transition and reward function

We formalize the notions of state space, control space, transition function and reward function as
usual

X : (t : N) → Type

Y : (t : N) → (x : X t) → Type

next : (t : N) → (x : X t) → (y : Y t x ) → M (X (S t))

Val : Type

reward : (t : N) → (x : X t) → (y : Y t x ) → (x ′ : X (S t)) → Val

(⊕) : Val → Val → Val

zero : Val

(6) : Val → Val → Type

10.2 Uncertainty measure

In the deterministic case M X = X and the above functions completely define a sequential decision
problem.

But when a decision step has an uncertain outcome, uncertainties about ”next” states naturally
yield uncertainties about rewards. In these cases, the decision maker faces a number of possible
rewards (one for each possible next state) and has to explain how to measure such chances. In
stochastic decision problems, possible next states (and, therefore possible rewards) are labeled
with probabilities. In these cases, possible rewards are often measured in terms of their expected
value. Here, again, we follow the approach proposed by Ionescu in [2] and introduce a measure

meas : M Val → Val

10.3 Basic requirements

The basic requirements for implementing a verified form of backwards induction are, as in the
deterministic case

map : {A,B : Type } → (A → B) → M A → M B

lteRefl : {a : Val } → a 6 a

lteTrans : {a, b, c : Val } → a 6 b → b 6 c → a 6 c
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plusMon : {a, b, c, d : Val } → a 6 b → c 6 d → (a ⊕ c) 6 (b ⊕ d)

Additionally, as shown in [2], meas has to fulfill a monotonicity condition:

measMon : {A : Type } → (f , g : A → Val) → ((a : A) → (f a) 6 (g a)) →
(ma : M A) → meas (map f ma) 6 meas (map g ma)

Under exact arithmetic, the expected value measure does fulfill measMon, as one would expect.

It is useful to introduce a binary operator that extends (⊕) to generic functions of codomain Val :

(
⊕

) : {A : Type } → (A → Val) → (A → Val) → A → Val

f
⊕

g = λa ⇒ f a ⊕ g a

10.4 Policies and policy sequences

With these premises, the naive theory from lecture 7 extends very straightforwardly to the general,
monadic case. The notions of policy and policy sequence are exactly the same:

Policy : (t : N) → Type

Policy t = (x : X t) → Y t x

data PolicySeq : (t : N) → (n : N) → Type where

Nil : {t : N} → PolicySeq t Z

(::) : {t ,n : N} → Policy t → PolicySeq (S t) n → PolicySeq t (S n)

10.5 Value function

The definition of the value function is a natural extension of the deterministic definition from
lecture 7. This was

val : {t ,n : N} → PolicySeq t n → (x : X t) → Val

val {t } Nil x = zero

val {t } (p :: ps) x = let y = p x in

let x ′ = next t x y in

reward t x y x ′ ⊕ val ps x ′

In the monadic case, next t x y yields an M -structure (a list, a probability distribution, etc.) of
values of type X (S t).

As anticipated above, applying reward t x y
⊕

val ps to these values yields an M -structure of Val
values. This uncertainty over possible rewards is then measured with meas:

val : {t ,n : N} → PolicySeq t n → (x : X t) → Val
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val {t } Nil x = zero

val {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in

meas (map (reward t x y
⊕

val ps) mx ′)

Exercise 10.1. What are the types of mx ′, reward t x y
⊕

val ps and
map (reward t x y

⊕
val ps) mx ′ in the definition of val?

We will come back to the definition of val later in this lecture.

10.6 Optimality notions and Bellman’s principle

The notions of optimal policy sequence, optimal extension and Bellman’s principle of optimality
are exactly the same as in the deterministic case:

OptPolicySeq : {t ,n : N} → PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (ps ′ : PolicySeq t n) → (x : X t) → val ps ′ x 6 val ps x

OptExt : {t ,m : N} → PolicySeq (S t) m → Policy t → Type

OptExt {t } ps p = (p′ : Policy t) → (x : X t) → val (p′ :: ps) x 6 val (p :: ps) x

Bellman : {t ,m : N} →
(ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t) → OptExt ps p →
OptPolicySeq (p :: ps)

The implementation of Bellman now crucially relies on the monotonicity of meas:

Bellman {t } ps ops p oep (p′ :: ps ′) x =

let y ′ = p′ x in

let mx ′ = next t x y ′ in

let f ′ = reward t x y ′ ⊕ val ps ′ in

let f = reward t x y ′ ⊕ val ps in

let s0 = λx ′ ⇒ plusMon lteRefl (ops ps ′ x ′) in -- ?

let s1 = measMon f ′ f s0 mx ′ in -- val (p′ :: ps ′) x 6 val (p′ :: ps) x

let s2 = oep p′ x in -- val (p′ :: ps) x 6 val (p :: ps) x

lteTrans s1 s2
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Exercise 10.2. What is the type of s0 in the definition of Bellman?

10.7 Verified backwards induction

This fragment of the theory is exactly as in the deterministic case:

nilOptPolicySeq : OptPolicySeq Nil

nilOptPolicySeq Nil x = lteRefl

optExt : {t ,n : N} → PolicySeq (S t) n → Policy t

optExtSpec : {t ,n : N} → (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

bi : (t : N) → (n : N) → PolicySeq t n

bi t Z = Nil

bi t (S n) = let ps = bi (S t) n in optExt ps :: ps

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

biLemma t Z = nilOptPolicySeq

biLemma t (S n) = let ps = bi (S t) n in

let ops = biLemma (S t) n in

let p = optExt ps in

let oep = optExtSpec ps in

Bellman ps ops p oep

10.8 Naive monadic theory, wrap up

This completes the extension of the naive theory from lecture 7 to the monadic case. Putting
together

• Viability and reachability constraints,

• Generic verified optimal extension of arbitrary policy sequences and

• General, monadic SDPs,

is not completely trivial. The full theory (monadic, with viability and reachability constraints and
generic optimal extensions) is implemented in ”IdrisLibs/SequentialDecisionProblems/FullTheory.lidr”
[1].

In the remainder of this lecture, we will discuss an important question related to the interpretation
of the value function in the monadic case.

In lecture 11, we dissect an application of the full theory to a climate emission problem.
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10.9 The val-val ′ equivalence in the monadic case

We have argued that, for ps : PolicySeq t n and x : X t , val ps x represents the meas-measure
(for instance, the expected value) of the sum of the rewards along the trajectories that are obtained
under ps when starting in x .

In lecture 7, we have shown that, for the deterministic case, this is indeed the case, i.e.

valVal ′Th : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → val ps x = val ′ ps x

holds. We now want to derive the same result for the general, monadic case. As in the deterministic
case, we start by defining sequences of state-control pairs

data StateCtrlSeq : (t : N) → (n : N) → Type where

Last : {t : N} → (x : X t) → StateCtrlSeq t (S Z )

(:::) : {t ,n : N} →
Σ (X t) (Y t) → StateCtrlSeq (S t) (S n) → StateCtrlSeq t (S (S n))

and a function sumR that computes the sum of the rewards of a state-control sequence:

head : {t ,n : N} → StateCtrlSeq t (S n) → X t

head (Last x ) = x

head (MkSigma x y ::: xys) = x

sumR : {t ,n : N} → StateCtrlSeq t n → Val

sumR {t } (Last x ) = zero

sumR {t } (MkSigma x y ::: xys) = reward t x y (head xys)⊕ sumR xys

Next, we implement a function which computes all the trajectories that are obtained under a
policy sequence ps when starting in x . For this, M has to be equipped with monadic operations

pure : {A : Type } → A → M A

(>>=) : {A,B : Type } → M A → (A → M B) → M B

join : {A : Type } → M (M A) → M A

As usual, we require the operations to fulfill the functor and monad specification from lecture 6:

mapPresId : ExtEq (map id) id

mapPresComp : {A,B ,C : Type } →
(f : A → B) → (g : B → C ) → ExtEq (map (g ◦ f )) (map g ◦map f )

mapPresExtEq : {A,B : Type } → (f , g : A → B) → ExtEq f g → ExtEq (map f ) (map g)

TiPES Deliverable D6.1 

 

 

 Page 
125 

 
  

  



pureNatTrans : {A,B : Type } → (f : A → B) → ExtEq (map f ◦ pure) (pure ◦ f )

joinNatTrans : {A,B : Type } → (f : A → B) → ExtEq (map f ◦ join) (join ◦map (map f ))

triangleLeft : ExtEq (join ◦ pure) id

triangleRight : ExtEq (join ◦map pure) id

squareLemma : ExtEq (join ◦map join) (join ◦ join)

bindJoinMapSpec : {A,B : Type } → (f : A → M B) → ExtEq (>>=f ) (join ◦map f )

With pure and >>=, we can express the computation of the trajectories as

trj : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → M (StateCtrlSeq t (S n))

trj {t } Nil x = pure (Last x )

trj {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in

map ((MkSigma x y):::) (mx ′ >>= trj ps)

and compute the measure of the sum of the rewards obtained along the trajectories that are
obtained under the policy sequence ps when starting in x

val ′ : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → Val

val ′ ps x = meas (map sumR (trj ps x ))

Exercise 10.3. What is the type of map sumR (trj ps x ) in the definition of val ′ ps x? How
does the size of map sumR (trj ps x ) depend on the length of ps? val ′ ps x applies meas only
once. How does the number of applications of meas depend on the length of ps in val ps x?

Now we can formulate the property that val ps does indeed compute the measure of the sum of
the rewards obtained along the trajectories obtained under the policy sequence ps:

valVal ′Th : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → val ps x = val ′ ps x

As it turns out, the measure function meas has to fulfill three natural conditions for the val -val ′

theorem to hold. These are

measPlusLemma : {A : Type } → (f , g : A → Val) → (ma : M A) →
meas (map (f

⊕
g) ma) = meas (map f ma)⊕meas (map g ma)
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measJoinLemma : (vss : M (M Val)) → meas (join vss) = meas (map meas vss)

measConstLemma : {A : Type } → (v : Val) → (ma : M A) →
meas (map (const v) ma) = v

Exercise 10.4. Describe the meaning of measPlusLemma, measJoinLemma and
measConstLemma in words. Rewrite the types of the measure lemmas using the property
ExtEq .

In order to prove valVal ′Th, we first put forward a few auxiliary lemmas:

mapConstLemma : {A,B ,C : Type } → (c : C ) → (ma : M A) → (f : A → B) →
map (const c) ma = map (const c) (map f ma)

measRetLemma : (v : Val) → meas (pure v) = v

mapJoinLemma : {A,B ,C : Type } →
(f : B → C ) → (g : A → M B) → (ma : M A) →
map f (join (map g ma)) = join (map (map f ◦ g) ma)

mapHeadLemma : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) →
map head (trj ps x ) = map (const x ) (trj ps x )

measMapHeadLemma : {t ,n : N} → (ps : PolicySeq t n) →
(f : X t → Val) → (x : X t) →
(meas ◦ (map (f ◦ head) ◦ (trj ps))) x = f x

measMapHeadLemma ′ : {t ,n : N} →
(ps : PolicySeq t n) → (mx : M (X t)) → (f : X t → Val) →
meas (map (f ◦ head) (mx >>= trj ps)) = meas (map f mx )

sumRLemma : {t ,m : N} → (x : X t) → (y : Y t x ) →
(xyss : M (StateCtrlSeq (S t) (S m))) →
map sumR (map ((MkSigma x y):::) xyss)

=

map (((reward t x y) ◦ head)
⊕

sumR) xyss
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We prove these lemmas in section 10.10 below. With their help, we can prove the equivalence of
val and val ′ by induction on ps:

valVal ′Th : {t ,n : N} → (ps : PolicySeq t n) → (x : X t) → val ps x = val ′ ps x

valVal ′Th Nil x = (val Nil x )

= {Refl } =

(zero)

= {sym (measRetLemma zero)} =

(meas (pure zero))

= {Refl } =

(meas (pure (sumR (Last x ))))

= {cong (sym (pureNatTrans sumR (Last x )))} =

(meas (map sumR (pure (Last x ))))

= {Refl } =

(meas (map sumR (trj Nil x )))

= {Refl } =

(val ′ Nil x )

QED

valVal ′Th {t } {n = S m } (p :: ps) x =

let y = p x in

let mx ′ = next t x y in

let r = reward t x y in

let h = trj ps in

let lhs = meas (map r mx ′) in

let lhs ′ = meas (map (r ◦ head) (mx ′ >>= h)) in

let rhs = meas (map meas (map (map sumR) (map h mx ′))) in

(val (p :: ps) x )

= {Refl } =

(meas (map (r
⊕

val ps) mx ′))

= {measPlusLemma r (val ps) mx ′} =

(meas (map r mx ′)⊕meas (map (val ps) mx ′))

-- val ps x = val ′ ps x ⇒ map (val ps) mx ′ = map (val ′ ps) mx ′

= {cong {f = λα⇒ lhs ⊕meas α}
(mapPresExtEq (val ps) (val ′ ps) (valVal ′Th ps) mx ′)} =

(lhs ⊕meas (map (val ′ ps) mx ′))

-- val’ ps x = ((meas . map sumR) . h) x =¿
-- map (val’ ps) mx’ = map ((meas . map sumR) . h) mx’

= {cong {f = λα⇒ lhs ⊕meas α}

TiPES Deliverable D6.1 

 

 

 Page 
128 

 
  

  



(mapPresExtEq (val ′ ps)
((meas ◦map {A = StateCtrlSeq (S t) (S m)} sumR) ◦ h)

(λx ⇒ Refl) mx ′)} =
(lhs ⊕meas (map ((meas ◦map sumR) ◦ h) mx ′))

= {cong {f = λα⇒ lhs ⊕meas α}
(mapPresComp h (meas ◦map {A = StateCtrlSeq (S t) (S m)} sumR) mx ′)} =

(lhs ⊕meas (map (meas ◦ (map sumR)) (map h mx ′)))

= {cong {f = λα⇒ lhs ⊕meas α}
(mapPresComp (map {A = StateCtrlSeq (S t) (S m)} sumR) meas (map h mx ′))} =

(lhs ⊕meas (map meas (map (map sumR) (map h mx ′))))

= {Refl } =

(meas (map r mx ′)⊕ rhs)

-- measMapHeadLemma ′: meas (map (f ◦ head) (xs >>= trj ps)) = meas (map f xs)

= {cong {f = λα⇒ α⊕ rhs }
(sym (measMapHeadLemma ′ ps mx ′ r))} =

(meas (map (r ◦ head) (mx ′ >>= h))⊕ rhs)

= {Refl } =

(meas (map (r ◦ head) (mx ′ >>= h))⊕meas (map meas (map (map sumR) (map h mx ′))))

-- measJoinLemma: meas (join vss) = meas (map meas vss)

= {cong {f = λα⇒ lhs ′ ⊕ α}
(sym (measJoinLemma (map (map sumR) (map h mx ′))))} =

(lhs ′ ⊕meas (join (map (map sumR) (map h mx ′))))

= {cong {f = λα⇒ lhs ′ ⊕meas (join α)}
(sym (mapPresComp h (map {A = StateCtrlSeq (S t) (S m)} sumR) mx ′))} =

(lhs ′ ⊕meas (join {A = Val } (map (map sumR ◦ h) mx ′)))

= {cong {f = λα⇒ lhs ′ ⊕meas α}
(sym (mapJoinLemma sumR h mx ′))} =

(lhs ′ ⊕meas (map sumR (join (map h mx ′))))

= {cong {f = λα⇒ lhs ′ ⊕meas (map sumR α)}
(sym (bindJoinMapSpec {B = StateCtrlSeq (S t) (S m)} h mx ′))} =

(lhs ′ ⊕meas (map sumR (mx ′ >>= h)))

= {Refl } =

(meas (map (r ◦ head) (mx ′ >>= h))⊕meas (map sumR (mx ′ >>= h)))

= {sym (measPlusLemma (r ◦ head) sumR (mx ′ >>= h))} =

(meas (map ((r ◦ head)
⊕

sumR) (mx ′ >>= h)))

-- sumRLemma: map sumR (map ((MkSigma x y):::) xyss) = map ((r ◦ head)
⊕

sumR) xyss

= {cong (sym (sumRLemma {m = m } x y (mx ′ >>= h)))} =

(meas (map sumR (map {A = StateCtrlSeq (S t) (S m)} ((MkSigma x y):::)
(mx ′ >>= trj ps))))

= {Refl } =
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(meas (map sumR (trj (p :: ps) x )))

= {Refl } =

(val ′ (p :: ps) x )

QED

10.10 Auxiliary results

mapConstLemma c ma f = (map (const c) ma)

= {Refl } =

(map ((const c) ◦ f ) ma)

= {mapPresComp f (const c) ma } =

(map (const c) (map f ma))

QED

measRetLemma v = (meas (pure v))

= {cong (sym (pureNatTrans (const v) v))} =

(meas (map (const v) (pure v)))

= {measConstLemma v (pure v)} =

(v)
QED

mapJoinLemma f g ma = (map f (join (map g ma)))

= {joinNatTrans f (map g ma)} =

(join (map (map f ) (map g ma)))

= {Refl } =

(join ((map (map f ) ◦ (map g)) ma))

= {cong (sym (mapPresComp g (map f ) ma))} =

(join (map (map f ◦ g) ma))

QED

mapHeadLemma {t } {n = Z } Nil x

= (map head (trj Nil x ))

= {Refl } =

(map head (pure (Last x )))

= {pureNatTrans head (Last x )} =

(pure (head (Last x )))

= {Refl } =

(pure x )
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= {sym (pureNatTrans {A = StateCtrlSeq t (S Z )} (const x ) (Last x ))} =

(map (const x ) (pure (Last x )))

= {Refl } =

(map (const x ) (trj Nil x ))

QED

mapHeadLemma {t } {n = S m } (p :: ps) x

= let y = p x in

let xy = MkSigma x y in

let mx ′ = next t x y in

let xyss = (mx ′ >>= trj ps) in

(map head (trj (p :: ps) x ))

= {Refl } =

(map head (map {B = StateCtrlSeq t (S (S m))} (xy :::) xyss))

= {sym (mapPresComp {B = StateCtrlSeq t (S (S m))} (xy :::) head xyss)} =

(map (head ◦ (xy :::)) xyss)

= {Refl } =

(map (const x ) xyss)

= {mapConstLemma {B = StateCtrlSeq t (S (S m))} x xyss (xy :::)} =

(map (const x ) (map {B = StateCtrlSeq t (S (S m))} (xy :::) xyss))

= {Refl } =

(map (const x ) (trj (p :: ps) x ))

QED

measMapHeadLemma {t } {n } ps f x

= ((meas ◦ (map (f ◦ head) ◦ (trj ps))) x )

= {Refl } =

(meas (map (f ◦ head) (trj ps x )))

= {cong (mapPresComp head f (trj ps x ))} =

(meas (map f (map head (trj ps x ))))

= {cong {f = λα⇒ meas (map f α)} (mapHeadLemma ps x )} =

(meas (map f (map (const x ) (trj ps x ))))

= {cong (sym (mapPresComp {A = StateCtrlSeq t (S n)} (const x ) f (trj ps x )))} =

(meas (map (f ◦ (const x )) (trj ps x )))

= {Refl } =

(meas (map (const (f x )) (trj ps x )))

= {measConstLemma (f x ) (trj ps x )} =

(f x )

QED
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measMapHeadLemma ′ {t } {n } ps mx f

= let g = trj ps in

(meas (map (f ◦ head) (mx >>= g)))

= {cong {f = λα⇒ meas (map (f ◦ head) α)} (bindJoinMapSpec {B = StateCtrlSeq t (S n)} g mx )} =

(meas (map (f ◦ head) (join (map g mx ))))

= {cong (mapJoinLemma (f ◦ head) g mx )} =

(meas (join (map (map (f ◦ head) ◦ g) mx )))

= {measJoinLemma (map (map (f ◦ head) ◦ g) mx )} =

(meas (map meas (map (map (f ◦ head) ◦ g) mx )))

= {cong (sym (mapPresComp (map (f ◦ head) ◦ g) meas mx ))} =

(meas (map (meas ◦ (map (f ◦ head) ◦ g)) mx ))

= {cong (mapPresExtEq (meas ◦ (map (f ◦ head) ◦ (trj ps))) f (measMapHeadLemma ps f ) mx )} =

(meas (map f mx ))

QED

sumRLemma {t } {m } x y xyss

= (map sumR (map {A = StateCtrlSeq (S t) (S m)} ((MkSigma x y):::) xyss))

= {sym (mapPresComp {A = StateCtrlSeq (S t) (S m)} ((MkSigma x y):::) sumR xyss)} =

(map {A = StateCtrlSeq (S t) (S m)} (sumR ◦ ((MkSigma x y):::)) xyss)

= {Refl } =

(map (((reward t x y) ◦ head)
⊕

sumR) xyss)

QED
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In this lecture we learn how to specify and solve the GHG emission problem sketched in lecture 1
using the SequentialDecisionProblems components of IdrisLibs, see [2].

The idea is that ”best” decisions on levels of greenhouse gases (GHG) emissions (that is, how
much GHG shall be allowed to be emitted in a given time period) are affected by three major
sources of uncertainty:

1. uncertainty about the (typically negative) effects of high GHG concentrations in the atmo-
sphere,

2. uncertainty about the availability of effective (cheap, efficient) technologies for reducing
GHG emissions,

3. uncertainty about the capability of actually implementing a decision on a given GHG emis-
sion level.

We study the effects of these uncertainties on optimal sequences of emission policies.

We design an emission game that accounts for all three sources of uncertainty and yet is simple
enough to support investigating the logical consequences of different assumptions through com-
parisons and parametric studies.

For a more comprehensive discussion of this approach and of the emission game, see [1].

11.1 Controls

We consider a game in which, at each decision step, the decision maker can select between low
and high GHG emissions

Y t x = LowHigh

Low emissions, if implemented, increase the cumulated GHG emissions less than high emissions.

11.2 States

At each decision step, the decision maker has to choose an option on the basis of four data: the
cumulated GHG emissions, the current emission level (low or high), the availability of effective
technologies for reducing GHG emissions and the state of the world. Effective technologies for
reducing GHG emissions can be either available or unavailable. The state of the world can be
either good or bad:

CumulatedEmissions : (t : N) → Type

CumulatedEmissions t = Fin (S t)

X t = (CumulatedEmissions t ,LowHigh,AvailableUnavailable,GoodBad)

The idea is that the game starts with zero cumulated emissions, high emission levels, unavailable
GHG technologies and with the world in a good state.
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In these conditions, the probability to enter the bad state is low. But if the cumulated emissions
increase beyond a fixed critical threshold, the probability that the state of the world turns bad
increases. If the world is the bad state, there is no chance to come back to the good state.

Similarly, the probability that effective technologies for reducing GHG emissions become available
increases after a fixed number of decision steps. Once available, effective technologies stay available
for ever.

The capability of actually implementing a decision on a given GHG emission level in general
depends on many factors. In our simplified setup, we just investigate the effect of inertia: im-
plementing low emissions is easier when low emission policies are already in place than when the
current emission policies are high emission policies. Similarly, implementing high emission policies
is easier under high emissions policies than under low emissions policies.

11.3 Transition function

The critical cumulated emissions threshold:

crE : Double

crE = 4.0

The critical number of decision steps:

crN : N
crN = 2

The probability of staying in a good world when the cumulated emissions are 6 the critical
threshold crE :

pS1 : NonNegDouble

pS1 = cast 0.9

The probability of staying in a good world when the cumulated emissions are > the critical
threshold crE :

pS2 : NonNegDouble

pS2 = cast 0.1

check01 : pS2 6 pS1 -- semantic check

check01 = MkLTE Oh

The probability of effective technologies for reducing GHG emissions becoming available when the
number of decision steps is below crN :

pA1 : NonNegDouble

pA1 = cast 0.1

The probability of effective technologies for reducing GHG emissions becoming available when the
number of decision steps is above crN :
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pA2 : NonNegDouble

pA2 = cast 0.9

check02 : pA1 6 pA2 -- semantic check

check02 = MkLTE Oh

The probability of being able to implement low emission policies when the current emissions are
low and low emissions are selected:

pLL : NonNegDouble

pLL = cast 0.9

The probability of being able to implement low emission policies when the current emissions are
high and low emissions are selected:

pLH : NonNegDouble

pLH = cast 0.7

check03 : pLH 6 pLL -- semantic check

check03 = MkLTE Oh

The probability of being able to implement high emission policies when the current emissions are
low and high emissions are selected;

pHL : NonNegDouble

pHL = cast 0.7

The probability of being able to implement high emission policies when the current emissions are
high and high emissions are selected:

pHH : NonNegDouble

pHH = cast 0.9

check04 : pHL 6 pHH -- semantic check

check04 = MkLTE Oh

Low emissions leave the cumulated emissions unchanged, high emissions increase the cumulated
emissions by one:

The transition function:

The transition function: high emissions

The transition function: high emissions, unavailable GHG technologies

The transition function: high emissions, unavailable GHG technologies, good world

using implementation NumNonNegDouble
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SequentialDecisionProblems.CoreTheory .nexts t (e,H ,U ,G) L =

let ttres = mkSimpleProb -- case t 6 crN ∧ fromFin e 6 crE

[((weaken e, L,U ,G), pLH ∗ (1− pA1 ) ∗ pS1 ),

((FS e, H ,U ,G), (1− pLH ) ∗ (1− pA1 ) ∗ pS1 ),

((weaken e, L,A,G), pLH ∗ pA1 ∗ pS1 ),

((FS e, H ,A,G), (1− pLH ) ∗ pA1 ∗ pS1 ),

((weaken e, L,U ,B), pLH ∗ (1− pA1 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA1 ) ∗ (1− pS1 )),

((weaken e, L,A,B), pLH ∗ pA1 ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLH ) ∗ pA1 ∗ (1− pS1 ))] in

let tfres = mkSimpleProb -- case t 6 crN ∧ fromFin e > crE

[((weaken e, L,U ,G), pLH ∗ (1− pA1 ) ∗ pS2 ),

((FS e, H ,U ,G), (1− pLH ) ∗ (1− pA1 ) ∗ pS2 ),

((weaken e, L,A,G), pLH ∗ pA1 ∗ pS2 ),

((FS e, H ,A,G), (1− pLH ) ∗ pA1 ∗ pS2 ),

((weaken e, L,U ,B), pLH ∗ (1− pA1 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA1 ) ∗ (1− pS2 )),

((weaken e, L,A,B), pLH ∗ pA1 ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLH ) ∗ pA1 ∗ (1− pS2 ))] in

let ftres = mkSimpleProb -- case t > crN ∧ fromFin e 6 crE

[((weaken e, L,U ,G), pLH ∗ (1− pA2 ) ∗ pS1 ),

((FS e, H ,U ,G), (1− pLH ) ∗ (1− pA2 ) ∗ pS1 ),

((weaken e, L,A,G), pLH ∗ pA2 ∗ pS1 ),

((FS e, H ,A,G), (1− pLH ) ∗ pA2 ∗ pS1 ),

((weaken e, L,U ,B), pLH ∗ (1− pA2 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA2 ) ∗ (1− pS1 )),

((weaken e, L,A,B), pLH ∗ pA2 ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLH ) ∗ pA2 ∗ (1− pS1 ))] in

let ffres = mkSimpleProb -- case t > crN ∧ fromFin e > crE

[((weaken e, L,U ,G), pLH ∗ (1− pA2 ) ∗ pS2 ),

((FS e, H ,U ,G), (1− pLH ) ∗ (1− pA2 ) ∗ pS2 ),

((weaken e, L,A,G), pLH ∗ pA2 ∗ pS2 ),

((FS e, H ,A,G), (1− pLH ) ∗ pA2 ∗ pS2 ),

((weaken e, L,U ,B), pLH ∗ (1− pA2 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA2 ) ∗ (1− pS2 )),

((weaken e, L,A,B), pLH ∗ pA2 ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLH ) ∗ pA2 ∗ (1− pS2 ))] in

case (t 6 crN ) of
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True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,U ,G) H =

let ttres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHH ) ∗ (1− pA1 ) ∗ pS1 ),

((FS e, H ,U ,G), pHH ∗ (1− pA1 ) ∗ pS1 ),

((weaken e, L,A,G), (1− pHH ) ∗ pA1 ∗ pS1 ),

((FS e, H ,A,G), pHH ∗ pA1 ∗ pS1 ),

((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA1 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), pHH ∗ (1− pA1 ) ∗ (1− pS1 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA1 ∗ (1− pS1 )),

((FS e, H ,A,B), pHH ∗ pA1 ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHH ) ∗ (1− pA1 ) ∗ pS2 ),

((FS e, H ,U ,G), pHH ∗ (1− pA1 ) ∗ pS2 ),

((weaken e, L,A,G), (1− pHH ) ∗ pA1 ∗ pS2 ),

((FS e, H ,A,G), pHH ∗ pA1 ∗ pS2 ),

((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA1 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), pHH ∗ (1− pA1 ) ∗ (1− pS2 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA1 ∗ (1− pS2 )),

((FS e, H ,A,B), pHH ∗ pA1 ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHH ) ∗ (1− pA2 ) ∗ pS1 ),

((FS e, H ,U ,G), pHH ∗ (1− pA2 ) ∗ pS1 ),

((weaken e, L,A,G), (1− pHH ) ∗ pA2 ∗ pS1 ),

((FS e, H ,A,G), pHH ∗ pA2 ∗ pS1 ),

((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA2 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), pHH ∗ (1− pA2 ) ∗ (1− pS1 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA2 ∗ (1− pS1 )),

((FS e, H ,A,B), pHH ∗ pA2 ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHH ) ∗ (1− pA2 ) ∗ pS2 ),

((FS e, H ,U ,G), pHH ∗ (1− pA2 ) ∗ pS2 ),

((weaken e, L,A,G), (1− pHH ) ∗ pA2 ∗ pS2 ),
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((FS e, H ,A,G), pHH ∗ pA2 ∗ pS2 ),

((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA2 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), pHH ∗ (1− pA2 ) ∗ (1− pS2 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA2 ∗ (1− pS2 )),

((FS e, H ,A,B), pHH ∗ pA2 ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: high emissions, unavailable GHG technologies, bad world

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,U ,B) L =

let ttres = mkSimpleProb

[((weaken e, L,U ,B), pLH ∗ (1− pA1 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA1 )),

((weaken e, L,A,B), pLH ∗ pA1 ),

((FS e, H ,A,B), (1− pLH ) ∗ pA1 )] in

let tfres = mkSimpleProb

[((weaken e, L,U ,B), pLH ∗ (1− pA1 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA1 )),

((weaken e, L,A,B), pLH ∗ pA1 ),

((FS e, H ,A,B), (1− pLH ) ∗ pA1 )] in

let ftres = mkSimpleProb

[((weaken e, L,U ,B), pLH ∗ (1− pA2 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA2 )),

((weaken e, L,A,B), pLH ∗ pA2 ),

((FS e, H ,A,B), (1− pLH ) ∗ pA2 )] in

let ffres = mkSimpleProb

[((weaken e, L,U ,B), pLH ∗ (1− pA2 )),

((FS e, H ,U ,B), (1− pLH ) ∗ (1− pA2 )),

((weaken e, L,A,B), pLH ∗ pA2 ),

((FS e, H ,A,B), (1− pLH ) ∗ pA2 )] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

TiPES Deliverable D6.1 

 

 

 Page 
138 

 
  

  



False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,U ,B) H =

let ttres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA1 )),

((FS e, H ,U ,B), pHH ∗ (1− pA1 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA1 ),

((FS e, H ,A,B), pHH ∗ pA1 )] in

let tfres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA1 )),

((FS e, H ,U ,B), pHH ∗ (1− pA1 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA1 ),

((FS e, H ,A,B), pHH ∗ pA1 )] in

let ftres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA2 )),

((FS e, H ,U ,B), pHH ∗ (1− pA2 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA2 ),

((FS e, H ,A,B), pHH ∗ pA2 )] in

let ffres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHH ) ∗ (1− pA2 )),

((FS e, H ,U ,B), pHH ∗ (1− pA2 )),

((weaken e, L,A,B), (1− pHH ) ∗ pA2 ),

((FS e, H ,A,B), pHH ∗ pA2 )] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: high emissions, available GHG technologies

The transition function: high emissions, available GHG technologies, good world

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,A,G) L =

let ttres = mkSimpleProb

[((weaken e, L,A,G), pLH ∗ pS1 ),

((FS e, H ,A,G), (1− pLH ) ∗ pS1 ),

((weaken e, L,A,B), pLH ∗ (1− pS1 )),
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((FS e, H ,A,B), (1− pLH ) ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,A,G), pLH ∗ pS2 ),

((FS e, H ,A,G), (1− pLH ) ∗ pS2 ),

((weaken e, L,A,B), pLH ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLH ) ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,A,G), pLH ∗ pS1 ),

((FS e, H ,A,G), (1− pLH ) ∗ pS1 ),

((weaken e, L,A,B), pLH ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLH ) ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,A,G), pLH ∗ pS2 ),

((FS e, H ,A,G), (1− pLH ) ∗ pS2 ),

((weaken e, L,A,B), pLH ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLH ) ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,A,G) H =

let ttres = mkSimpleProb

[((weaken e, L,A,G), (1− pHH ) ∗ pS1 ),

((FS e, H ,A,G), pHH ∗ pS1 ),

((weaken e, L,A,B), (1− pHH ) ∗ (1− pS1 )),

((FS e, H ,A,B), pHH ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,A,G), (1− pHH ) ∗ pS2 ),

((FS e, H ,A,G), pHH ∗ pS2 ),

((weaken e, L,A,B), (1− pHH ) ∗ (1− pS2 )),

((FS e, H ,A,B), pHH ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,A,G), (1− pHH ) ∗ pS1 ),

((FS e, H ,A,G), pHH ∗ pS1 ),

((weaken e, L,A,B), (1− pHH ) ∗ (1− pS1 )),
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((FS e, H ,A,B), pHH ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,A,G), (1− pHH ) ∗ pS2 ),

((FS e, H ,A,G), pHH ∗ pS2 ),

((weaken e, L,A,B), (1− pHH ) ∗ (1− pS2 )),

((FS e, H ,A,B), pHH ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: high emissions, available GHG technologies, bad world

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,A,B) L =

let ttres = mkSimpleProb

[((weaken e, L,A,B), pLH ),

((FS e, H ,A,B), (1− pLH ))] in

let tfres = mkSimpleProb

[((weaken e, L,A,B), pLH ),

((FS e, H ,A,B), (1− pLH ))] in

let ftres = mkSimpleProb

[((weaken e, L,A,B), pLH ),

((FS e, H ,A,B), (1− pLH ))] in

let ffres = mkSimpleProb

[((weaken e, L,A,B), pLH ),
((FS e, H ,A,B), (1− pLH ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,H ,A,B) H =

let ttres = mkSimpleProb

[((weaken e, L,A,B), (1− pHH )),

((FS e, H ,A,B), pHH ) ] in
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let tfres = mkSimpleProb

[((weaken e, L,A,B), (1− pHH )),

((FS e, H ,A,B), pHH ) ] in

let ftres = mkSimpleProb

[((weaken e, L,A,B), (1− pHH )),

((FS e, H ,A,B), pHH ) ] in

let ffres = mkSimpleProb

[((weaken e, L,A,B), (1− pHH )),

((FS e, H ,A,B), pHH ) ] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: low emissions

The transition function: low emissions, unavailable GHG technologies

The transition function: low emissions, unavailable GHG technologies, good world

SequentialDecisionProblems.CoreTheory .nexts t (e,L,U ,G) L =

let ttres = mkSimpleProb

[((weaken e, L,U ,G), pLL ∗ (1− pA1 ) ∗ pS1 ),

((FS e, H ,U ,G), (1− pLL) ∗ (1− pA1 ) ∗ pS1 ),

((weaken e, L,A,G), pLL ∗ pA1 ∗ pS1 ),

((FS e, H ,A,G), (1− pLL) ∗ pA1 ∗ pS1 ),

((weaken e, L,U ,B), pLL ∗ (1− pA1 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA1 ) ∗ (1− pS1 )),

((weaken e, L,A,B), pLL ∗ pA1 ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLL) ∗ pA1 ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,U ,G), pLL ∗ (1− pA1 ) ∗ pS2 ),

((FS e, H ,U ,G), (1− pLL) ∗ (1− pA1 ) ∗ pS2 ),

((weaken e, L,A,G), pLL ∗ pA1 ∗ pS2 ),

((FS e, H ,A,G), (1− pLL) ∗ pA1 ∗ pS2 ),

((weaken e, L,U ,B), pLL ∗ (1− pA1 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA1 ) ∗ (1− pS2 )),

((weaken e, L,A,B), pLL ∗ pA1 ∗ (1− pS2 )),
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((FS e, H ,A,B), (1− pLL) ∗ pA1 ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,U ,G), pLL ∗ (1− pA2 ) ∗ pS1 ),

((FS e, H ,U ,G), (1− pLL) ∗ (1− pA2 ) ∗ pS1 ),

((weaken e, L,A,G), pLL ∗ pA2 ∗ pS1 ),

((FS e, H ,A,G), (1− pLL) ∗ pA2 ∗ pS1 ),

((weaken e, L,U ,B), pLL ∗ (1− pA2 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA2 ) ∗ (1− pS1 )),

((weaken e, L,A,B), pLL ∗ pA2 ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLL) ∗ pA2 ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,U ,G), pLL ∗ (1− pA2 ) ∗ pS2 ),

((FS e, H ,U ,G), (1− pLL) ∗ (1− pA2 ) ∗ pS2 ),

((weaken e, L,A,G), pLL ∗ pA2 ∗ pS2 ),

((FS e, H ,A,G), (1− pLL) ∗ pA2 ∗ pS2 ),

((weaken e, L,U ,B), pLL ∗ (1− pA2 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA2 ) ∗ (1− pS2 )),

((weaken e, L,A,B), pLL ∗ pA2 ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLL) ∗ pA2 ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,L,U ,G) H =
let ttres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHL) ∗ (1− pA1 ) ∗ pS1 ),

((FS e, H ,U ,G), pHL ∗ (1− pA1 ) ∗ pS1 ),

((weaken e, L,A,G), (1− pHL) ∗ pA1 ∗ pS1 ),

((FS e, H ,A,G), pHL ∗ pA1 ∗ pS1 ),

((weaken e, L,U ,B), (1− pHL) ∗ (1− pA1 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), pHL ∗ (1− pA1 ) ∗ (1− pS1 )),

((weaken e, L,A,B), (1− pHL) ∗ pA1 ∗ (1− pS1 )),

((FS e, H ,A,B), pHL ∗ pA1 ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHL) ∗ (1− pA1 ) ∗ pS2 ),
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((FS e, H ,U ,G), pHL ∗ (1− pA1 ) ∗ pS2 ),

((weaken e, L,A,G), (1− pHL) ∗ pA1 ∗ pS2 ),

((FS e, H ,A,G), pHL ∗ pA1 ∗ pS2 ),

((weaken e, L,U ,B), (1− pHL) ∗ (1− pA1 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), pHL ∗ (1− pA1 ) ∗ (1− pS2 )),

((weaken e, L,A,B), (1− pHL) ∗ pA1 ∗ (1− pS2 )),

((FS e, H ,A,B), pHL ∗ pA1 ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHL) ∗ (1− pA2 ) ∗ pS1 ),

((FS e, H ,U ,G), pHL ∗ (1− pA2 ) ∗ pS1 ),

((weaken e, L,A,G), (1− pHL) ∗ pA2 ∗ pS1 ),

((FS e, H ,A,G), pHL ∗ pA2 ∗ pS1 ),

((weaken e, L,U ,B), (1− pHL) ∗ (1− pA2 ) ∗ (1− pS1 )),

((FS e, H ,U ,B), pHL ∗ (1− pA2 ) ∗ (1− pS1 )),

((weaken e, L,A,B), (1− pHL) ∗ pA2 ∗ (1− pS1 )),

((FS e, H ,A,B), pHL ∗ pA2 ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,U ,G), (1− pHL) ∗ (1− pA2 ) ∗ pS2 ),

((FS e, H ,U ,G), pHL ∗ (1− pA2 ) ∗ pS2 ),

((weaken e, L,A,G), (1− pHL) ∗ pA2 ∗ pS2 ),

((FS e, H ,A,G), pHL ∗ pA2 ∗ pS2 ),

((weaken e, L,U ,B), (1− pHL) ∗ (1− pA2 ) ∗ (1− pS2 )),

((FS e, H ,U ,B), pHL ∗ (1− pA2 ) ∗ (1− pS2 )),

((weaken e, L,A,B), (1− pHL) ∗ pA2 ∗ (1− pS2 )),

((FS e, H ,A,B), pHL ∗ pA2 ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: low emissions, unavailable GHG technologies, bad world

SequentialDecisionProblems.CoreTheory .nexts t (e,L,U ,B) L =
let ttres = mkSimpleProb

[((weaken e, L,U ,B), pLL ∗ (1− pA1 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA1 )),

((weaken e, L,A,B), pLL ∗ pA1 ),
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((FS e, H ,A,B), (1− pLL) ∗ pA1 )] in

let tfres = mkSimpleProb

[((weaken e, L,U ,B), pLL ∗ (1− pA1 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA1 )),

((weaken e, L,A,B), pLL ∗ pA1 ),

((FS e, H ,A,B), (1− pLL) ∗ pA1 )] in

let ftres = mkSimpleProb

[((weaken e, L,U ,B), pLL ∗ (1− pA2 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA2 )),

((weaken e, L,A,B), pLL ∗ pA2 ),

((FS e, H ,A,B), (1− pLL) ∗ pA2 )] in

let ffres = mkSimpleProb

[((weaken e, L,U ,B), pLL ∗ (1− pA2 )),

((FS e, H ,U ,B), (1− pLL) ∗ (1− pA2 )),

((weaken e, L,A,B), pLL ∗ pA2 ),

((FS e, H ,A,B), (1− pLL) ∗ pA2 )] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,L,U ,B) H =

let ttres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHL) ∗ (1− pA1 )),

((FS e, H ,U ,B), pHL ∗ (1− pA1 )),

((weaken e, L,A,B), (1− pHL) ∗ pA1 ),

((FS e, H ,A,B), pHL ∗ pA1 )] in

let tfres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHL) ∗ (1− pA1 )),

((FS e, H ,U ,B), pHL ∗ (1− pA1 )),

((weaken e, L,A,B), (1− pHL) ∗ pA1 ),

((FS e, H ,A,B), pHL ∗ pA1 )] in

let ftres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHL) ∗ (1− pA2 )),

((FS e, H ,U ,B), pHL ∗ (1− pA2 )),

((weaken e, L,A,B), (1− pHL) ∗ pA2 ),
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((FS e, H ,A,B), pHL ∗ pA2 )] in

let ffres = mkSimpleProb

[((weaken e, L,U ,B), (1− pHL) ∗ (1− pA2 )),

((FS e, H ,U ,B), pHL ∗ (1− pA2 )),

((weaken e, L,A,B), (1− pHL) ∗ pA2 ),

((FS e, H ,A,B), pHL ∗ pA2 )] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: low emissions, available GHG technologies

The transition function: low emissions, available GHG technologies, good world

SequentialDecisionProblems.CoreTheory .nexts t (e,L,A,G) L =

let ttres = mkSimpleProb

[((weaken e, L,A,G), pLL ∗ pS1 ),

((FS e, H ,A,G), (1− pLL) ∗ pS1 ),

((weaken e, L,A,B), pLL ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLL) ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,A,G), pLL ∗ pS2 ),

((FS e, H ,A,G), (1− pLL) ∗ pS2 ),

((weaken e, L,A,B), pLL ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLL) ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,A,G), pLL ∗ pS1 ),

((FS e, H ,A,G), (1− pLL) ∗ pS1 ),

((weaken e, L,A,B), pLL ∗ (1− pS1 )),

((FS e, H ,A,B), (1− pLL) ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,A,G), pLL ∗ pS2 ),

((FS e, H ,A,G), (1− pLL) ∗ pS2 ),

((weaken e, L,A,B), pLL ∗ (1− pS2 )),

((FS e, H ,A,B), (1− pLL) ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of
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True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,L,A,G) H =

let ttres = mkSimpleProb

[((weaken e, L,A,G), (1− pHL) ∗ pS1 ),

((FS e, H ,A,G), pHL ∗ pS1 ),

((weaken e, L,A,B), (1− pHL) ∗ (1− pS1 )),

((FS e, H ,A,B), pHL ∗ (1− pS1 ))] in

let tfres = mkSimpleProb

[((weaken e, L,A,G), (1− pHL) ∗ pS2 ),

((FS e, H ,A,G), pHL ∗ pS2 ),

((weaken e, L,A,B), (1− pHL) ∗ (1− pS2 )),

((FS e, H ,A,B), pHL ∗ (1− pS2 ))] in

let ftres = mkSimpleProb

[((weaken e, L,A,G), (1− pHL) ∗ pS1 ),

((FS e, H ,A,G), pHL ∗ pS1 ),

((weaken e, L,A,B), (1− pHL) ∗ (1− pS1 )),

((FS e, H ,A,B), pHL ∗ (1− pS1 ))] in

let ffres = mkSimpleProb

[((weaken e, L,A,G), (1− pHL) ∗ pS2 ),

((FS e, H ,A,G), pHL ∗ pS2 ),

((weaken e, L,A,B), (1− pHL) ∗ (1− pS2 )),

((FS e, H ,A,B), pHL ∗ (1− pS2 ))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

The transition function: low emissions, available GHG technologies, bad world

SequentialDecisionProblems.CoreTheory .nexts t (e,L,A,B) L =

let ttres = mkSimpleProb

[((weaken e, L,A,B), pLL),

((FS e, H ,A,B), (1− pLL))] in
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let tfres = mkSimpleProb

[((weaken e, L,A,B), pLL),

((FS e, H ,A,B), (1− pLL))] in

let ftres = mkSimpleProb

[((weaken e, L,A,B), pLL),

((FS e, H ,A,B), (1− pLL))] in

let ffres = mkSimpleProb

[((weaken e, L,A,B), pLL),

((FS e, H ,A,B), (1− pLL))] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres

SequentialDecisionProblems.CoreTheory .nexts t (e,L,A,B) H =

let ttres = mkSimpleProb

[((weaken e, L,A,B), (1− pHL)),

((FS e, H ,A,B), pHL) ] in

let tfres = mkSimpleProb

[((weaken e, L,A,B), (1− pHL)),

((FS e, H ,A,B), pHL) ] in

let ftres = mkSimpleProb

[((weaken e, L,A,B), (1− pHL)),

((FS e, H ,A,B), pHL) ] in

let ffres = mkSimpleProb

[((weaken e, L,A,B), (1− pHL)),

((FS e, H ,A,B), pHL) ] in

case (t 6 crN ) of

True ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ttres

False ⇒ trim tfres

False ⇒ case (fromFin e 6 crE ) of

True ⇒ trim ftres

False ⇒ trim ffres
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11.4 Val and LTE :

Values of type Val are just non-negative double precision floating point numbers, addition, zero
and (6) are defined accordingly:

Val = NonNegDouble.NonNegDouble

plus = NonNegDouble.Operations.plus

zero = fromInteger@{NumNonNegDouble } 0

(6) = NonNegDouble.Predicates.LTE

reflexiveLTE = NonNegDouble.LTEProperties.reflexiveLTE

transitiveLTE = NonNegDouble.LTEProperties.transitiveLTE

monotonePlusLTE = NonNegDouble.LTEProperties.monotonePlusLTE

totalPreorderLTE = NonNegDouble.LTEProperties.totalPreorderLTE

11.5 Reward function

The idea is that being in a good world yields one unit of benefits per step and being in a bad
world yield less benefits. These are defined by the ratio badOverGood .

The ratio between the benefits in a bad world and the benefits in a good world:

badOverGood : NonNegDouble

badOverGood = cast 0.89

check05 : badOverGood 6 1 -- semantic check

check05 = MkLTE Oh

Emitting GHGs also brings benefits. These are a fraction of the step benefits in a good world and
low emissions bring less benefits than high emissions:

The ratio between low emissions benefits and step benefits in a good world, when effective tech-
nologies for reducing GHG emissions are unavailable:

lowOverGoodUnavailable : NonNegDouble

lowOverGoodUnavailable = cast 0.1
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check06 : lowOverGoodUnavailable 6 1 -- semantic check

check06 = MkLTE Oh

The ratio between low emissions benefits and step benefits in a good world, when effective tech-
nologies for reducing GHG emissions are available:

lowOverGoodAvailable : NonNegDouble

lowOverGoodAvailable = cast 0.2

check07 : lowOverGoodAvailable 6 1 -- semantic check

check07 = MkLTE Oh

check08 : lowOverGoodUnavailable 6 lowOverGoodAvailable -- semantic check

check08 = MkLTE Oh

The ratio between high emissions benefits and step benefits in a good world:

highOverGood : NonNegDouble

highOverGood = cast 0.3

check09 : highOverGood 6 1 -- semantic check

check09 = MkLTE Oh

check10 : lowOverGoodAvailable 6 highOverGood -- semantic check

check10 = MkLTE Oh

The rewards only depend on the next state, not on the current state or on the selected control:

using implementation NumNonNegDouble

reward t x y (e,H ,U ,G) = 1 + 1 ∗ highOverGood

reward t x y (e,H ,U ,B) = 1 ∗ badOverGood + 1 ∗ highOverGood

reward t x y (e,H ,A,G) = 1 + 1 ∗ highOverGood

reward t x y (e,H ,A,B) = 1 ∗ badOverGood + 1 ∗ highOverGood

reward t x y (e,L,U ,G) = 1 + 1 ∗ lowOverGoodUnavailable

reward t x y (e,L,U ,B) = 1 ∗ badOverGood + 1 ∗ lowOverGoodUnavailable

reward t x y (e,L,A,G) = 1 + 1 ∗ lowOverGoodAvailable

reward t x y (e,L,A,B) = 1 ∗ badOverGood + 1 ∗ lowOverGoodAvailable

11.6 Completing the specification

In order to apply the verified, generic backwards induction algorithm of CoreTheory to compute
optimal policies for our problem, we have to explain how the decision maker accounts for un-
certainties on rewards induced by uncertainties in the transition function. We assume that the
decision maker measures uncertain rewards by their expected value:
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meas = expectedValue

measMon = monotoneExpectedValue

Further on, we have to implement the notions of viability and reachability. We start by positing
that all states are viable for any number of steps (remember Viable : (n : N) → X t → Type):

Viable n x = Unit

From this definition, it trivially follows that all elements of an arbitrary list of states are viable
for an arbitrary number of steps:

viableLemma : {t ,n : N} → (xs : List (State t)) → All (Viable n) xs

viableLemma Nil = Nil

viableLemma (x :: xs) = () :: (viableLemma xs)

This fact and the (less trivial) result that simple probability distributions are never empty, see
nonEmptyLemma in MonadicProperties in SimpleProb, allows us to show that the above definition
of Viable fulfills viableSpec1 (remember that viableSpec1 is of type (x : X t) → Viable (S n) x →
GoodCtrl t x ):

viableSpec1 {t } {n } s v =

MkSigma H (ne, av) where

ne : NotEmpty (nexts t s H )

ne = nonEmptyLemma (nexts t s H )

av : All (Viable n) (nexts t s H )

av = viableLemma (support (nexts t s H ))

Because we have taken Viable n x to be the singleton type, Viable is finite and decidable:

-- SequentialDecisionProblems.Utils.finiteViable n x = finiteUnit

decidableViable n x = decidableUnit

For reachability, we proceed in a similar way. We say that all states are reachable

Reachable x ′ = Unit

which immediately implies (remember that reachableSpec1 is of type (x : X t) → Reachable x →
(y : Y t x ) → All Reachable (nexts t x y)):

reachableSpec1 {t } x r y = all (nexts t x y) where
all : (sp : SimpleProb (State (S t))) → All Reachable sp
all sp = all ′ (support sp) where

all ′ : (xs : List (State (S t))) → Data.List .Quantifiers.All Reachable xs
all ′ Nil = Nil
all ′ (x :: xs) = () :: (all ′ xs)
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and decidability of Reachable:

decidableReachable x = decidableUnit

Finally, we have to show that controls are finite (remember that finiteCtrl is of type (x : X t) →
Finite (Y t x )):

finiteCtrl t = finiteLowHigh

and, in order to use the fast, tail-recursive tabulated version of backwards induction, that states
are finite:

finiteState t = finiteTuple4 finiteFin finiteLowHigh finiteAvailableUnavailable finiteGoodBad

11.7 Optimal policies and possible state-control sequences

We can now apply the results of the CoreTheory and of the FullTheory from SequentialDecisionProblems
to compute verified optimal policies, possible state-control sequences, etc. We want to be able to
show the outcome of the decision process. This requires implementing functions to print states
and controls:

showState {t } (e,H ,U ,G) = "(" ++ show (finToNat e) ++ ",H,U,G)"

showState {t } (e,H ,U ,B) = "(" ++ show (finToNat e) ++ ",H,U,B)"

showState {t } (e,H ,A,G) = "(" ++ show (finToNat e) ++ ",H,A,G)"

showState {t } (e,H ,A,B) = "(" ++ show (finToNat e) ++ ",H,A,B)"

showState {t } (e,L,U ,G) = "(" ++ show (finToNat e) ++ ",L,U,G)"

showState {t } (e,L,U ,B) = "(" ++ show (finToNat e) ++ ",L,U,B)"

showState {t } (e,L,A,G) = "(" ++ show (finToNat e) ++ ",L,A,G)"

showState {t } (e,L,A,B) = "(" ++ show (finToNat e) ++ ",L,A,B)"

showCtrl {t } {x } L = "L"

showCtrl {t } {x } H = "H"

With these in place, we can implement a program that reads the number of decision steps from
the command line, computes a verified optimal policy sequence and outputs some statistics of
possible trajectories and expected sum of rewards.

using implementation ShowNonNegDouble

partial

computation : { [STDIO ]} Eff ()

computation =

do putStr ("enter number of steps:\n")

nSteps ← getNat

putStrLn "nSteps (number of decision steps):"
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putStrLn (" " ++ show nSteps)

putStrLn "computing optimal policies ..."

ps ← pure (tabTailRecursiveBackwardsInduction Z nSteps)

putStrLn "computing possible state-control sequences ..."

mxys ← pure (possibleStateCtrlSeqs (FZ ,H ,U ,G) () () ps)

putStrLn "pairing possible state-control sequences with their values ..."

mxysv ← pure (possibleStateCtrlSeqsRewards ′ mxys)

putStrLn "computing (naively) the number of possible state-control sequences ..."

n ← pure (length (toList mxysv))

putStrLn "number of possible state-control sequences:"

putStrLn (" " ++ show n)

putStrLn "computing (naively) the most probable state-control sequence ..."

xysv ← pure (naiveMostProbableProb mxysv)

putStrLn "most probable state-control sequence and its probability:"

putStrLn (" " ++ show xysv)

putStrLn "sorting (naively) the possible state-control sequences ..."

xysvs ← pure (naiveSortToList mxysv)

putStrLn "most probable state-control sequences (first 3) and their probabilities:"

putStrLn (showlong (take 3 xysvs))

putStrLn "measure of possible rewards:"

putStrLn (" " ++ show (meas (SequentialDecisionProblems.CoreTheory .fmap snd mxysv)))

putStrLn "done!"

For a more comprehensive implementation, see EmissionsGame2 in SequentialDecisionProblems.applications.

Exercise 11.1. Compile this program with ”make Lecture11.exe” from the command line. Run
the program for 0, 1, 2, 4, 8 and 9 decision steps and annotate the run time. Put forward an
hypothesis about the run time complexity in the number of decision steps. Check your hypothesis.

partial

main : IO ()

main = run computation

TiPES Deliverable D6.1 

 

 

 Page 
153 

 
  

  



References

[1] N. Botta, P. Jansson, and C. Ionescu. The impact of uncertainty on optimal emission policies.
Earth System Dynamics, 9(2):525–542, 2018.

[2] Nicola Botta. IdrisLibs. https://gitlab.pik-potsdam.de/botta/IdrisLibs, 2016–2018.

TiPES Deliverable D6.1 

 

 

 Page 
154 
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3

Leibniz’s dream

Leibniz, early 18th century:

I ”calculus ratiocinator”
a framework for universal logical calculation

I ”characteristica universalis”
a universal language to be used within the above framework

Not in his lifetime, but...

I Considered as early anticipation of modern logic emerging in
the middle of the 19th century (Boole, Peirce, De Morgan...)

I Frege, 1879: seeks to implement Leibniz’s vision in his seminal
“Begriffsschrift” (∼ “conceptual language”) in which he
presents the propositional calculus and quantification theory

I Cantor, 1874: proposes (näıve) set theory as foundation of
mathematics

,
4
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“Foundational crisis of mathematics”

Beginning of the 20th century marked by controversy about the
foundations of mathematics.

I Math had become more and more abstract at the end of 19th
century leading to serious controversy

I Necessity for verified foundation
I Frege’s system and Cantor’s set theory turned out to be

inconsistent
I Example: Russell’s paradox – in Cantor’s “näıve” set theory

with unrestricted comprehension axiom one can form the set

A = {x | ¬(x ∈ x)}

“the set of all sets that do not contain themselves”
But what about A? Does it contain itself or not?

,
5

Dealing with paradoxes

Several proposals to overcome flaws in attempts for formal
foundations of mathematics:
I Hilbert: Proof theory and search for consistency proof

(“Hilbert’s program”)
I Russell: Ramified type theory
I Zermelo: Axiomatic set theory

Another, more radical response: Brouwer questions validity of
classical axioms like the tertium non datur, and initiates
intuitionistic logic/ constructive mathematics
where for a logical proposition P

proof of P = construction of a witness for P

,
6
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Timeline of modern type theories

Logic and computation

I Natural Deduction Gentzen, 1935
I λ-calculus Church, 1930s

(logical paradox amounting to
non-terminating computation)

I Simple Theory of Types Church, 1940
I Formulas as types Howard, 1969

(“Curry-Howard-correspondence”)
I 2nd Order λ-calculus Girard/Reynolds, 1971/74
I Dependent Type Theory Martin-Löf, 1970s
I Univalent Type Theory Voevodsky/

Theory/ Homotopy Type Theory Awody&Warren, ∼ 2006

,
7

Curry-Howard-correspondence

I Correspondence between Gentzen’s Intuitionistic Natural
Deduction (NJ ) and Church’s simply-typed λ calculus (STL)

I Three levels of correspondence:

propositions as types
proofs as programs

simplification of proofs as evaluation

I Correspondence also with Lambek, 1980
Cartesian Closed Categories

I Similar correspondences for many logics; setting in this talk:
Higher Order Intuitionistic Logic' Dependent Type Theory

,
8

TiPES Deliverable D6.1 

 

 

 Page 
158 

 
  

  



More correspondences

Curry-Howard-Lambek-Correspondence extends in several ways:
I Other logics: E.g. Linear Logic, Linear λ calculus and Monoidal

Closed Categories
I Higher Order Logic: Martin-Löf Type Theory/ modern

implementations of Dependent Type Theory build on the
correspondence and extend it to higher order logic with
inductive and coinductive definition and reasoning principles
(where recursive programs correspond to proofs by induction)

I Abstract homotopy theory: Equality proofs in Intensional
Martin-Löf Type Theory correspond to paths in topological
spaces

,
9

Programming languages based on type theory

I Provide a framework for both programming and
mathematical specification: at the same time “theorem
prover” and “programming language”, they are powerful tools
for program verification

I Via the propositions-as-types and proofs-as-programs
correspondence, the data types amount to mathematical
statements and programs to their proofs

I The rigorous setting reduces the “semantic gap” between
mathematical model and implementation and allows to
ensure meta-theoretical properties of all well-typed
programs

I Examples: Coq, Agda, Idris, Lean

,
10
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Mathematics: Computer-verified proofs

Examples of large-scale formalization projects which have been
carried out within implementations of (different) type theories:

I The four color theorem, in Coq Gonthier et al., 2005
I The Feit-Thomson (“odd order”) theorem, in Coq Gonthier et

al., 2012
I The Kepler conjecture, in Isabelle/HOL Hales et al., 2014

Broader formalization projects:
I Univalent Foundations – formalizatiion of various branches of

mathematics initiated by Voevodsky and based on his
Univalence Axiom, in Coq Ahrens et al.

I Mathematical library with ambition to formalize state of the
art number theory, in Lean Buzzard et al.

,
11
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Historical sketch and general overview

Brief introduction to formal logic
Proposistional Logic
Predicate Logic

Gentzen systems and proofs-as-programs

Wrap Up

,
12
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Formal logic

I You already have a basic hands-on idea of logical statements
from the main lectures

I We first take a look at a standard, set-theory based
introduction to propositional logic as can be found in
textbooks such as [18]

I We then take a look at how a similar definition might look in
Idris, following the “DSL of math” approach by Ionescu and
Jansson [11]

,
13
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,
14
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The language of propositional logic I

Definition
The language of propositional logic has an alphabet consisting of
I proposition symbols: A,B,C, . . .
I connectives: >,⊥,⇒, ∧,∨,¬
I auxiliary symbols: (, )

The proposition symbols,> and⊥ stand for indecomposable
propositions that are usually called atoms or atomic propositions.

,
15

The propositional connectives

The connectives go by the following names and sometimes by
some other choice of notation, here are some examples:

conjunction ∧ AND &&
disjunction ∨ OR ||
implication ⇒ IMPLIES ⊃

negation ¬ NEG ∼
truth > TRUE 1
falsity ⊥ FALSE 0

,
16
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The language of propositional logic II
We have to specify which strings over the alphabet for propositional logic
are what we consider well-formed propositions:

Definition
The set PROP of propositions is the smallest set X with the properties

(i) A ∈ X for all proposition symbols A,

(ii) > ∈ X,

(iii) ⊥ ∈ X,

(iv) ϕ,ψ ∈ X implies (ϕ⇒ ψ) ∈ X

(v) ϕ,ψ ∈ X implies (ϕ ∧ ψ) ∈ X, (ϕ ∨ ψ) ∈ X, (ϕ⇒ ψ) ∈ X

(vi) ϕ,ψ ∈ X implies (ϕ ∨ ψ) ∈ X,

(vii) ϕ ∈ X implies (¬ϕ) ∈ X

,
17

Examples and convention

Example

The following are examples of well-formed formulas:

(A⇒ (B⇒ C))

(A ∨ ⊥)

(¬(A ∧ B))

Exercise: Give examples of well-formed propositions involving the other
connectives.
Convention: In order to avoid writing too many brackets, one usually
defines precedence rules for the connectives and allows to omit brackets
if there is no ambiguity.
(Standard: ∧ binds tighter than ∨ which binds tighter than⇒;⇒
associates to the right)

,
18
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Proving properties of propositions

To prove properties of propositions one reasons inductively,
proceeding in analogy to the definition of propositions:

Start with the atoms (base cases) and then deal with the composite
propositions (step cases).

This proof method is justified by the following theorem, which
provides the induction principle for PROP:

(next slide)

,
19

Induction principle

Theorem
Let P be a property, then P(ϕ) holds for all ϕ ∈ PROP if

(i) P(A), for all proposition symbols A,
(ii) P(>),
(iii) P(⊥),
(iv) P(ϕ) and P(ψ) implies P((ϕ⇒ ψ)),
(v) P(ϕ) and P(ψ) implies P((ϕ ∧ ψ)),

(vi) P(ϕ) and P(ψ) implies P((ϕ ∨ ψ)),
(vii) P(ϕ) implies P((¬ϕ)).

,
20
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Proof of the induction principle

Proof.
Let X = {ϕ ∈ PROP | P(ϕ)}, then X satisfies the conditions
(i)− (vii) in the definition of the set PROP above.

As by definition PROP is the smallest set satisfying these
conditions, it must hold that PROP ⊆ X, and thus for all
ϕ ∈ PROP, P(ϕ) holds.

,
21

Proving properties of propositions

We already have seen a proof by induction in the example for
equational reasoning in section 2.5 of the regular lectures.

Recall that in this example we worked with the recursive definition
of the exponentiation function:

∀x ∈ R, x0 = 1 and

∀x ∈ R,m ∈ N, x1+m = x ∗ xm

An analogous principle of definition exists as well for the syntax of
propositional logic:

(next slide)

,
22
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Definition by recursion

Theorem
Let mappings H⇒,H∧,H∨ : X2 → X, H¬ : X → X and H>,H⊥ : X be
given and let Hps be a mapping from the set of proposition symbols
into X, then there exists exactly one mapping F : PROP→ X such that





F(A) = Hps(A) for A proposition symbol
F(ϕ⇒ ψ) = H⇒(F(ϕ), F(ψ))

F(ϕ ∧ ψ) = H∧(F(ϕ), F(ψ))

F(ϕ ∨ ψ) = H∨(F(ϕ), F(ψ))

F(¬ϕ) = H¬(F(ϕ))

(In general we would still have to prove the existence of a unique
function satisfying the above equations.)

,
23

Example for definition by recursion

As an example, we might define the number of brackets b(ϕ) of a
proposition ϕ, b : PROP→ N:

Example





b(A) = 0 for A proposition symbol
b(>) = 0
b(⊥) = 0
b(ϕ⇒ ψ) = b(ϕ) + b(ψ) + 2
b(ϕ ∧ ψ) = b(ϕ) + b(ψ) + 2
b(ϕ ∨ ψ) = b(ϕ) + b(ψ) + 2
b(¬ϕ) = b(ϕ) + 1

,
24
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A first look at semantics

I Having defined the syntax of propositional logic and we now
ask about its meaning, that is: its semantics

I The probably best-known semantics is the classical boolean
semantics, the so-called truth-table semantics

I In this interpretation, the propositional variables can take
values in {0, 1} and the logical connectives are interpreted as
boolean functions

,
25

Classical logic: truth-table-semantics I

As the name suggests, the interpretation is usually given by tables:

A B A⇒ B A ∨ B A ∧ B ¬A
0 0 1 0 0 1
0 1 1 1 0 1
1 0 0 1 0 0
1 1 1 1 1 0

⊥ is interpreted as constant 0 and> as constant 1.

,
26
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Classical logic: truth-table-semantics II

As only the observable results of applying these functions are
relevant, operators are easily interdefinable.

Compare e.g. the following table with the one on the last slide:

A B ¬A ∨ B ¬A ∧ ¬B ¬A ∨ ¬B A⇒ 0
0 0 1 0 0 1
0 1 1 1 0 1
1 0 0 1 0 0
1 1 1 1 1 0

,
27

Classical logic: truth-table-semantics III

To be more formal, we can make use of the principle of definition
by recursion, as in the earlier example.

Let a be a mapping from the set of proposition symbols to {0, 1}.
Then we can define an interpretation or evaluation function
e : PROP→ {0, 1} by:





e(A) = a(A) for A proposition symbol
e(>) = 1
e(⊥) = 0
e(ϕ⇒ ψ) = max((1− e(ϕ), e(ψ))

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))

e(ϕ ∨ ψ) = max(e(ϕ), e(ψ))

e(¬ϕ) = 1− e(ϕ)

,
28
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Object- and meta-language I

I All the definitions we have seen so far use a meta-language
(e.g. the smallest set X with the properties..,∈, implies, . . . ) to
make definitions and reason about an object language

I The meta language in this case is a semi-formal set theory
while the object language is the language of propositional
logic, a newly defined syntax

I Proof by induction and definition by recursion play a crucial role

,
29

Object and meta language II

I When we use an expressive type theory like the one underlying Idris
as formal meta-language to make definitions as the above,
meta-theoretic statements are now part of the programming
language

I Syntaxes as the language of propositional logic can be defined as
inductive data types (using the “data” keyword in Idris)

I Moreover, the underlying type theory provides us with the principle
of definition by recursion ”for free”: In functional programming it is
known as pattern matching and is the standard way to define
functions out of inductive data types

I As an aside: in Idris, we neither have to bother with defining an
alphabet and well-formed strings over it separately: values of
inductive types are syntax trees, the alphabet is given implicitly with
the definition

,
30
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A DSL of propositional logic – Syntax

Thus, we can define the syntax of propositional logic as abstract
data type in Idris. This might be seen as implementing a
domain-specific language of propositional logic:

> data PropSyntax : Type where

> PropAtom : String -> PropSyntax

> PropFalse : PropSyntax

> PropTrue : PropSyntax

> PropNot : PropSyntax -> PropSyntax

> PropAnd : PropSyntax -> PropSyntax -> PropSyntax

> PropOr : PropSyntax -> PropSyntax -> PropSyntax

> PropImplies : PropSyntax -> PropSyntax -> PropSyntax

,
31

A DSL of propositional logic – Syntax

Example

> pr1 : PropSyntax

> pr1 = PropOr (PropAtom "A") (PropNot (PropAtom "A"))

>

> pr2 : PropSyntax

> pr2 = PropImplies (PropAtom "A") (PropAtom "B")

>

> pr3 : PropSyntax

> pr3 = PropImplies (PropAnd (PropAtom "A") (PropAtom "B"))

> (PropAnd (PropAtom "B") (PropAtom "A"))

,
32
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A DSL of propositional logic – Syntax

We can define the above truth table semantics by pattern
matching: an evaluation function evalPC : PropSyntax ->

Bool using Idris’ data type for booleans (with constructors True and
False) and Boolean functions not, &&, || from the Idris standard
library.

> evalAt : String -> Bool

>

> evalPC : PropSyntax -> Bool

> evalPC PropFalse = False

> evalPC PropTrue = True

> evalPC (PropNot x ) = not (evalPC x)

> evalPC (PropAnd x y) = (evalPC x) && (evalPC y)

> evalPC (PropOr x y) = (evalPC x) || (evalPC y)

> evalPC (PropImplies x y) = (not (evalPC x)) || (evalPC y)

> evalPC (PropAtom s ) = evalAt s

,
33

Denotational vs. operational semantics

I In terms of domain-specific languages, evalPC is a translation from
a syntactic to a semantic domain: PropSyntax here is the syntactic
domain (abstract syntax), Bool is the semantic domain

I Truth table semantics is a denotational semantics: What is important
is just the result of evaluating a proposition – its denotation

I However, there is a more dymnamical way to look at semantics:
Instead of asking just about the truth value of a proposition, one
might ask about its proofs. This leads to the constructive or
intuitionistic perception of logic ( see the historical sketch)

I Classical and intuitionistic logic share the same syntax (although
negation is not taken as primitive in the intuitionistic case) - but
differ in their conception of what is an acceptable proof

I This is reflected in the interpretation of the logical operators

,
34
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Brouwer-Heyting-Kolmogorov interpretation

Definition
A primitive object p as proof of an atomic proposition A is given by a
construction

p proves A
The meaning of complex proofs is inductively defined by:

I There is a unique construction of>.

I There is no construction of⊥.

I A proof of P⇒ Q is a construction f which transforms a proof Φ of P
into a proof f(Φ) of Q.

I A proof of P0 ∧ P1 is a pair 〈Φ0,Φ1〉 consisting of a proof Φ0 of P0
and a proof Φ1 of P1.

I A proof of a disjunction P0 ∨ P1 is a pair 〈b,Φ〉 where b = 0 and Φ is
a proof of P0 or b = 1 and Φ is a proof of P1.

,
35

Construction

I Note that in the BHK semantics it is not further specified what
exactly is a construction of an atomic proposition – it is assumed to
be given by a context

I In arithmetics the proof of a formula n = m might e.g. be a
calculation that reduces both sides of the equality to the same
number

I However, this underspecification of the notion of ”construction”
leads to different possible interpretations depending on the chosen
underlying definition

I One possibility to concretely define what is meant by “construction”
amounts to the proofs-as-programs-correspondence between
intuitionistic logic and the simply-typed λ calculus

,
36
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A glimpse of predicate logic

I We will just try to give a very rough idea of predicate logic

I In first order logic (FOL), formulas may contain terms, e.g. ∀n.Sn > n

I Terms are either variables (like n) or function (or more generally
relation) symbols (like S, >) applied to a suitable number of terms.

I The function symbols often formalize a specific domain, e.g.
number theory.

I First order quantification is over term variables of a specific domain
(encoded as strings in the example below), and not over propositions
– this would require higher order quantification

,
38
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Informally: meaning of the quantifiers
Now, what is the semantics of the quantifiers? What is a proof of

∀n.∃m.m > n?

I The universal quantifier ∀ can be seen as generalization of the
conjunction ∧:

∀x.Px ' Px1 ∧ Px2 ∧ . . .
I This is ok in case there are only finitely many such x, but would need

an infinite number of proofs in the infinite case!
I This problem is usually solved by introducing an arbitrary fresh

variable x′ and proving P x′ without knowing anything about x
I Thus, a proof of ∀x.Px can be seen as a function p from terms to

proofs such that px is a proof of Px for each term x
I Similarly, ∃x.Px can be seen as potentially infinite version of

disjunction ∨:
∃x.Px ' Px1 ∨ Pxs ∨ . . .

,
39

A DSL of a first order language – Syntax

In Idris, we might define a first order syntax with function symbols
+ and ∗ as follows:
> data Num : Type where

> FOLPlus : Num -> Num -> Num

> FOLMult : Num -> Num -> Num

> FOLVar : String -> Num

> data FOL : Type where

> FOLFalse : FOL

> FOLTrue : FOL

> FOLNot : FOL -> FOL

> FOLAnd : FOL -> FOL -> FOL

> FOLOr : FOL -> FOL -> FOL

> FOLImplies : FOL -> FOL -> FOL

> FOLEq : Num -> Num -> FOL

> FOLForall : String -> FOL -> FOL

> FOLExists : String -> FOL -> FOL

,
40
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BHK interpretation for predicate logic

The BHK-semantics for intuitionistic propositional logic extends to
intuitionistic predicate logic. One assumes that individual variables
range over some basic domain D (which means that no further
proof for a fact d ∈ D is required).

I For atomic predicates p(x), there is for every d ∈ D for which
P(d) has a proof a construction p(d).

I A proof of ∀x.P(x) is a construction transforming any d ∈ D
into a proof p(d) of P(d).

I A proof p of ∃x.P(x) is a pair 〈d, q〉 where q is a proof of P(d)
(that is, free occurrences of the variable x in P(x) are replaced
by d).

,
41
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Curry-Howard

I As put mentioned in the historical sketch, the so-called
Curry-Howard-correspondence amounts to a stuctural
correspondence between proofs in Gentzen’s natural
deduction proof systemNJ and typing derivations in Church’s
simply-typed λ calculus STL

I As such it forms the core of which Martin-Löf type theory is a
vast extension

I We will look at at the⇒,∧-fragment ofNJ and the
corresponding fragment of STL and then see a small example
in order to get a more concrete idea of the correspondence

,
43

Natural Deduction

Hypothesis: A

Introduction: Elimination:

A B ∧-IA ∧ B
A ∧ B ∧-E1A

A ∧ B ∧-E2B

[A]x

...
B ⇒-IxA⇒ B

A⇒ B A ⇒-EB

,
44
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λ-calculus with products

The λ-calculus can be seen as a minimal functional programming
language.

Its syntax in Backus-Naur-form:

s, t ::== x | λx.t | (s t) | 〈s, t〉 | pr1 t | pr2 t

(Church first defined the λ-calculus without types; he introduced
types to the language to avoid “paradoxical” terms.)

,
45

Simply-typed λ-calculus

Hypothesis: x : A

Introduction: Elimination:

s : A t : B ×-I〈s, t〉 : A× B
t : A× B ×-E1
pr1 t : A

t : A× B ×-E2pr2 t : B

[x : A]x

...
t : B →-Ixλx.t : A→ B

s : A→ B t : A →-E
(s t) : B

,
46

TiPES Deliverable D6.1 

 

 

 Page 
177 

 
  

  



Example: proof

TheNJ inference rules can now be combined to build proofs, e.g.:

[B ∧ A]z

∧-E2A
[B ∧ A]z

∧-E1B ∧-IA ∧ B ⇒-Iz
(B ∧ A)⇒ (A ∧ B)

Exchanging ∧ against× and⇒ against→ and annotating the proof
tree with λ-terms . . .

,
47

Example: program

. . . we get the following typing derivation for the program
λz. 〈pr2 z, pr1 z〉:

z : [B× A]z

×-E2pr2 z : A
[z : B× A]z

×-E2pr1 z : B
×-I〈pr2 z, pr1 z〉 : A× B
→-Iz

λz. 〈pr2 z, pr1 z〉 : (B× A)→ (A× B)

By erasing the term annotations and exchanging again the
connectives we would get back the originalNJ proof.

,
48
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Curry-Howard continued

I We have just seen two levels of the correspondence for the
∧,⇒ /×,→ fragments:
I formulas and types
I proof rules and typing rules

I But the correspondence extends to a third level:
I proof simplification and program evaluation

I Let’s have a look at the simplification rules and then another
example . . .

,
49

Simplification of proofs

Proofs can be simplified, if they contain an application of an elimination
rule for a connective after the application of an introduction rule for the
same connective. Such an occurrence is called a cut.

[A]x

...
B ⇒-IxA⇒ B

...
A ⇒-EB

7→

...
A
...
B

...
A

...
B ∧-IA ∧ B ∧-E1A

7→ ...
A

...
A

...
B ∧-IA ∧ B ∧-E2B

7→ ...
B

,
50
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Simply-typed λ-calculus: Reduction

For the λ-calculus, evaluation of programs is defined by reduction
rules for terms s, t:

((λx.t) s) 7→ t{x := s}

pr1 〈s, t〉 7→ s

pr2 〈s, t〉 7→ t

Expressions which can be reduced consist of a constructor term
(here: lambda, pair) followed by a destructor term (here: application,
projection).
These expressions are called redexes.
(More precisely, this is just one form of reduction, usually called β-reduction. But
we do not look at other forms of reduction in this lecture.)

,
51

Example: Proof simplification

Consider the following proof:

[B ∧ A]z

∧-E2A
[B ∧ A]z

∧-E1B ∧-IA ∧ B ⇒-Iz
(B ∧ A)⇒ (A ∧ B)

B A ∧-IB ∧ A
⇒-EA ∧ B

It is somewhat uneconomic and one would like to eliminate unnecessary
detours from proofs to obtain proofs in a normal form which does not
contain any cuts.

,
52

TiPES Deliverable D6.1 

 

 

 Page 
180 

 
  

 

  



Example: Proof simplification

In fact, there is a systematic procedure to obtain such normal form
proofs inNJ . (It is called cut elimination.)
In our example, we can simplify as follows:

[B ∧ A]z

∧-E2A
[B ∧ A]z

∧-E1B ∧-IA ∧ B ⇒-Iz
(B ∧ A)⇒ (A ∧ B)

B A ∧-IB ∧ A
⇒-EA ∧ B

simplifies to

B A ∧-IB ∧ A ∧-E2A

B A ∧-IB ∧ A ∧-E1B ∧-IA ∧ B

,
53

Example: Proof simplification

... which further simplifies:

B A ∧-IB ∧ A ∧-E2A

B A ∧-IB ∧ A ∧-E1B ∧-IA ∧ B

simplifies to

A B ∧-IA ∧ B

This proof cannot be made any shorter, it is cut-free.

,
54
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Example: Proof simplification vs. program evaluation

Now we can again transform the original proof tree into a typing
derivation:

z : [B× A]z

×-E2
pr2 z : A

[z : B× A]z

×-E1
pr1 z : B

×-I〈pr2 z, pr1 z〉 : A× B
→-Iz

λz. 〈pr2 z, pr1 z〉 : (B× A)→ (A× B)

y : B x : A ×-I〈y, x〉 : B× A
→-E

(λz. 〈pr2 z, pr1 z〉) 〈y, x〉 : A× B

It looks equally uneconomic... but this time simplification amounts to
evaluation of λ-terms!

,
55

Example: Program evaluation
In STL the evaluation to a canonical form is called normalization
and evaluation goes by the name reduction.

z : [B× A]z

×-E2
pr2 z : A

[z : B× A]z

×-E1
pr1 z : B

×-I〈pr2 z, pr1 z〉 : A× B
→-Iz

λz. 〈pr2 z, pr1 z〉 : (B× A)→ (A× B)

y : B x : A ×-I〈y, x〉 : B× A
→-E

(λz. 〈pr2 z, pr1 z〉) 〈y, x〉 : A× B

reduces to

y : B x : A ×-I〈y, x〉 : B× A ×-E2
pr2 〈y, x〉 : A

y : B x : A ×-I〈y, x〉 : B× A ×-E1
pr1 〈y, x〉 : B

×-I〈pr2 〈y, x〉 , pr1 〈y, x〉〉 : A× B

,
56
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Example: Proof simplification

... which further simplifies:

y : B x : A ×-I〈y, x〉 : B× A ×-E2
pr2 〈y, x〉 : A

y : B x : A ×-I〈y, x〉 : B× A ×-E1
pr1 〈y, x〉 : B

×-I〈pr2 〈y, x〉 , pr1 〈y, x〉〉 : A× B

reduces to

x : A y : B ×-I〈x, y〉 : A× B

This program cannot be reduced any further, it is in normal form.

,
57

Plan

Historical sketch and general overview

Brief introduction to formal logic
Proposistional Logic
Predicate Logic

Gentzen systems and proofs-as-programs

Wrap Up

,
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What have we done in this lecture?

I We have first sketched the historical roots of type theory and
described the idea of proofs-as-programs without going into details

I We have then taken a brief look at a traditional approach to formal
logic and contrasted it with a “domain-specific-language of logic”
perspective; we have thereby seen that a language like Idris is not
only based in logic, but also provides the tools that are required of a
meta-language to implement and reason about different kinds of
logic

I We have learned about two important notions of semantics, namely
truth table semantics for classical logic and the
Brouwer-Heyting-Kolmogorov interpretation for intuitionistic logic

I We have taken a look at the three levels of the
Curry-Howard-correspondence restricted to the
implication-conjunction fragment of propositional intuitionistic logic

,
59
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CATEGORY THEORY

SOME BASICS FOR MONADIC DYNAMICAL SYSTEMS

MARCH 2020

Motivation: Monadic Dynamical Systems

The central notion underlying the theory of sequential decision
problems under uncertainty [1, 2] is that of a monadic dynamical
system [3].
The essential observation leading to this notion: Various types of
uncertainties can be modeled uniformly using the concept of
monad from category theory (non-determinism, probabilities, . . . )

I Monads were popularized in Haskell for encapsulating side
effects [4, 5], e.g. exceptions, state, partiality, input/output . . .

I From the programming perspective, the approach amounts to
implementing a small number of operators, usually called
map, pure/return, join and bind

I In Idris [6] we can also prove that these operations fulfill the
necessary axioms

BUT . . .

,
2
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Motivation: Monadic Dynamical Systems

. . . to properly define what a monad is, we need to
know some category-theoretical notions like

category, functor, natural transformation, . . .

To give a basic idea of category theory and the notions
coming up in the context of monadic dynamical systems
is the purpose of this lecture.

,
3

Plan

Introduction to basic concepts and terminology

Monads and adjunctions

Example: Deterministic dynamical systems

,
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Plan

Introduction to basic concepts and terminology

Monads and adjunctions

Example: Deterministic dynamical systems

,
5

Concrete Categories

A somewhat informal definition:

Definition
A concrete category C is a collection of two kinds of entities, called
objects and morphisms. The former are sets which are endowed
with some kind of structure, and the latter are mappings between
these sets which preserve that structure.

Among the morphisms, there is attached to each object X the
identity mapping idX : X −→C X s.t. idX(x) = x for all x ∈ X.

Morphisms f : Y −→C Y and g : X −→C Y may be composed to
produce a morphism f ◦C g : X −→C Z such that (f ◦C g) x = f(g(x))
for all x ∈ X.

,
6
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Concrete Categories - Examples

Example

I SET: the category of sets and total functions
I MON: with monoids (i.e. semigroups with a neutral element) as

objects and homomorphisms as mappings which preserve the
semigroup operation and the neutral element

I PRE: preordered sets (i.e. sets having a reflexive and transitive
relation on them) as objects and monotone mappings which
preserve this relation as morphisms

I TOP: topological spaces as objects and continuous functions
as morphisms

,
7

(Directed) Metagraphs

Definition
A metagraph G consists of two classes: a class MORG of arrows
(=oriented edges) and a class OBJG of objects (=nodes/vertices) and
two mappings MORG ⇒ OBJG called dom (source) and cod (target).

f : X −→G Y is then a notation for (dom f = X ∧ cod f = Y).

A metagraph is said to be small if the classes of objects and
morphisms are sets and then called (directed multi-) graph.

Example

GRPH, the category of small directed graphs, is another concrete
category. Which property would you expect to be required of its
morphisms?

,
8

TiPES Deliverable D6.1 

 

 

 Page 
189 

 
  

  



Deductive systems and categories

Definition
A deductive system is a metagraph in which to each object X there
is associated an identity arrow idX : X. −→C X, and
to each pair of arrows f : Y −→C Z and g : X −→C Y there is
associated an arrow f ◦C g : X −→C Z, the composition of f with g.

Definition
A category is a deductive system C in which the following
equations hold for all f : Y −→C Z, g : X −→C Y and h : W −→C X:

idZ ◦C f = f = f ◦C idY (1)

(f ◦C g) ◦C h = f ◦C (g ◦C h) (2)

A category is called small, if its underlying metagraph is.

,
9

GRPH

Definition
The category GRPH of small directed graphs is defined as follows:

Objects: directed graphs G,G′,G′′, . . .
Morphisms: f : G −→GRPH G′ are pairs 〈fM, fO〉 of morphisms

fM : MORG −→SET MORG′ and fO : OBJG −→SET OBJG′

s.t. for e : v −→G v′ one has fM e : fO v −→G′ fO v′

Identity: idG := 〈idMORG
, idOBJG

〉
Composition: For 〈fM, fO〉 : G′ −→GRPH G′′ and 〈gM, gO〉 : G −→GRPH G′

〈fM, fO〉 ◦GRPH 〈gM, gO〉 := 〈fM ◦SET gM, fO ◦SET gO〉

Exercise: Check that the identity and associativity laws hold!

,
10
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Functors

To define a category CAT of small categories, we need to define an
appropriate notion of morphism between categories.

We have already seen that the morphisms of a concrete category
are supposed to preserve the structure of its objects. The additional
structure in the case of categories amounts to its underlying graph
structure, identity and composition.

Definition
A functor F : C −→ D is a morphism of metagraphs 〈FM, FO〉
( i.e. every arrow f : X −→C Y is mapped to an arrow
FM f : FO X −→D FO Y ), such that

FM idX = idFO X (3)

FM (f ◦C g) = FM f ◦D FM g (4)

,
11

On functors and notation

When defining a functor F, we always have to define its object and
its morphism part, FO and FM, respectively.

However, to avoid clutter, it is usual to omit indices if they are clear
from the context.

This is why usually, both object and morphism parts of a functor F
are simply denoted by F.

In programming, FO and FM however have to be defined separately
and so this kind of overloading is not common. Instead the object
part is usually given the name of the functor, e.g. List, and the
morphism part is called map (or fmap).

This is the way you will see functors handled in Idris.

,
12
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Functors : List Example

Example

List : SET −→ SET is a functor 〈ListM, ListO〉, where ListO maps every
set A to the underlying set of the free monoid 〈List A, [ ] ,++〉 on
this set and ListM amounts to the familiar map function.

I for A ∈ OBJSET, ListO A := List A
I for f : A −→SET B, ListM f := mapList f : List A −→SET List B
I for all A ∈ OBJSET, mapList idA = idList A

I for all f : B −→SET C, g : A −→SET B,
mapList (f ◦SET g) = (mapList f) ◦SET (mapList g)

The free monoid of strings over an alphabet A with concatenation
as binary operation and the empty word as neutral element in a
mathematical context is often denoted by A∗ = 〈A∗, ε, ◦〉.

,
13

CAT: The category of small categories

With every category being a special directed graph, the category of
small (!) categories inherits its identities and composition from
GRPH (thus object and morphism maps are set functions).

Definition
The category CAT of small categories is defined as follows:

Objects: small categoriesA,B, C,D . . .
Morphisms: functors F : C −→CAT D

Identity: for all categories C, the identity functor IdC which maps
objects, resp. morphisms to themselves

Composition: For functors F = 〈FM, FO〉 : B −→CAT C and
G = 〈GM,GO〉 : A −→CAT B

F ◦CAT G := F ◦GRPH G = 〈FM ◦SET GM, FO ◦SET GO〉

,
14
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Large and small categories, Categorification

We have seen that instances of specific mathematical structures
can be considered as objects of specific concrete categories (like
MON, PRE, TOP) with structure preserving maps as morphisms.
However, many of these are large categories, i.e. their classes of
objects and morphisms are not sets.

But it is possible, to consider the objects of such categories
themselves as small categories. This is called categorification.

The structure preserving maps between these objects then amount
to functors between the corresponding small categories.

,
15

Categories : Categorification examples

I Every set can be considered as a discrete category with its
elements as objects and no morphisms except the identities
for each object.

I Any monoid M = 〈M, e,⊗〉 can be seen as a category with one
object, the elements of M as morphisms, e as the identity and
⊗ as composition. That the axioms for identity and
composition are fulfilled then follows from the corresponding
properties of e and⊗.

I Any preordered set P = 〈P,≤〉 can be seen as a category with
the elements of P as objects and exactly one morphism
between two objects X and Y iff X ≤ Y. That the axioms are
fulfilled then follows from reflexivity and transitivity of the
preorder.

,
16
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Categories as monoids

We have seen how to consider a monoid as small category.
But we also have:

A category C with one object • is a monoid, taking its morphisms as
elements, composition as binary operation and the identity
morphism as neutral element.

C = 〈MORC, id•, ◦C〉

,
17

Some more categories

Let C andD be arbitrary categories.

I The dual or opposite category Cop has the same objects as C,
but its morphisms are reversed, i.e. the domain and target
maps are interchanged.
A functor from Cop toD is often called a contravariant functor
from C toD.

I The product category C × D has as objects pairs of objects
(C,D) with C ∈ OBJC and D ∈ OBJD and as morphisms pairs
(f, g) : (C,D) −→C×D (C′,D′) with f : C −→C C′ and
g : D −→D D′. Composition and identities are defined
componentwise.

I The terminal category 1 which has just one object ? and one
morphism, namely id?.

,
18
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The Hom-functor

Definition
If X, Y ∈ OBJC , then HOMC(X, Y) denotes the class of all morphisms
X −→C Y.

C is said to be locally small if HOMC(X, Y) is a set for all pairs of
objects X, Y ∈ OBJC .

If C is locally small, there exists a functor HomC : Cop × C −→ SET
with HomC = 〈(HomC)M, (HomC)O〉:

I For (X, Y) ∈ OBJCop×C , (HomC)O(X, Y) := HOMC(X, Y)
I For (g, h) : (X′, Y) −→Cop×C (X, Y′),

HomC(g, h) := λf.h ◦C f ◦C g : HOMC(X, Y) −→SET HOMC(X′, Y′)

,
19

Alternative definition of categories
Categories can equivalently be defined in terms of Hom-sets. This definition is
usually adapted for implementation in type theory, replacing “SET” with “TYPE”.

Definition
A small category is given by the following data:

I a set of objects OBJC ,
I a function which assigns to each ordered pair 〈X, Y〉 of objects a set

HOMC(X, Y),
I for each X ∈ OBJC , a morphism idX ∈ HOMC(X,X)
I for each ordered triple 〈X, Y, Z〉 of objects, a function

HOMC(Y, Z)×HOMC(X, Y) −→SET HOMC(X, Z) called composition
and written ◦C .

where identity and composition fulfill the identity and associativity
axioms as in the prior definition and every morphism is required to have a
unique domain and codomain.

,
20
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Natural Transformations

If we wish to consider categories of functors, again we first have to define the
appropriate notion of structure-preserving morphism.

Definition
Given functors F,G : C −→ D, a natural transformation τ : F −→ G
is a family of arrows τX : F X −→D G X with one arrow for every
X ∈ OBJC such that

G f ◦D τX = τY ◦D F f

for all f : X −→C Y. Usually this condition is expressed by requiring
that the square on the right commutes:

X

Y

F X G X

F Y G Y

f

τX

τY

F f G f

,
21

Composition of natural transformations
There are two ways in which natural transformations can be composed:

Definition
Given functors F,G,H : C −→ D and natural transformations
σ : G −→ H, τ : F −→ G,
the vertical composition σ · τ is defined by, for all X ∈ OBJC :

(σ · τ)X := σX ◦D τX

Definition
Given functors F, F′ : B −→ C, G,G′ : A −→ B and natural
transformations σ : F −→ F′, τ : G −→ G′,
the horizontal composition σ ◦ τ is defined by, for all X ∈ OBJA:

(σ ◦ τ)X := F′ τX ◦C σG X = σG′ X ◦C F τX : (F ◦ G)X −→C (F′ ◦ G′)X

,
22
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Interchange law
Consider the following situation with F, F′,G,G′,H,H′ functors and
σ, σ′, τ, τ ′ natural transformations:

A B C

F F′

G G′

H H′

σ

τ

σ′

τ ′

We can either first compose the natural transformations vertically and
then vertically, or vice versa, giving respectively

(τ ′ · σ′) ◦ (τ · σ) or (τ ′ ◦ τ) · (σ′ ◦ σ)

The interchange law tells us that fortunately both are equal.
Exercise: Prove this by unfolding the definitions!

,
23

Functor categories

Given categories C andD, we can now define the category of
functors from C toD:

Definition
The functor categoryDC is defined as follows:

Objects: functors C −→ D
Morphisms: natural transformations τ : F −→DC G

Identity: the identity natural transformation defined by
(idF)X := idFX for all X ∈ OBJC

Composition: for natural transformations τ : G −→DC H and
σ : F −→DC G, for all X ∈ OBJC

(τ ◦DC σ)X := (τ ·σ)X = τX ◦D σX : F X −→D H X

,
24
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Again: Notation

We have already seen that the notation for the object and the morphism
part of functors are overloaded in category-theoretical standard notation.

There are some more conventions, that are important to know and which
we will also use in the following:

I The composition of functors F ◦ G is often simply written by
juxtaposition FG.

I The horizontal composition τ ◦ σ of natural transformations τ and
σ is also usually written by juxtaposition τσ.

I Composing a functor F horizontally with some natural
transformation τ , is called whiskering (on the left: F τ , on the right:
τ F). It can be seen as special case of horizontal composition of
natural transformations, if we consider F also as notation for the
identity natural transformation idF – even more overloading!

,
25

Examples: Structures as functors

We cannot only consider certain mathematical objects as
categories, but also as functors:

I A set can be seen as a functor from a discrete category with
one object to SET

I A small graph can be seen as a functor from the small
category (·⇒ ·) to SET

I Considering a monoid M = 〈M, e,⊗〉 as categoryM with one
object, an M-set can be seen as a functor fromM to SET
(an M-set is a set A on which M acts, i.e. equipped with an
action α : M× A −→SET A such that , α 〈e, a〉 = a and
α 〈m⊗m′, a〉 = α 〈m, α 〈m′, a〉〉 for all a ∈ A and m,m′ ∈ M)

The structure preserving morphisms between these objects then
amount to natural transformations.

,
26
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Plan

Introduction to basic concepts and terminology

Monads and adjunctions

Example: Deterministic dynamical systems

,
27

Monads Overview

I Generalization of closure operators on partially ordered sets

I Generalization of monoids
(“monoid in the category of endofunctors”)

I Monad algebras as generalization of group actions

I Computer science (Moggi’s observation [4]):
Computational effects (i.e. program behavior that in some
sense differs from than the behavior of a pure total function)
have the structure of monads

,
28

TiPES Deliverable D6.1 

 

 

 Page 
199 

 
  

  



Monads

Definition
A monad T = 〈T, η, µ〉 is an endofunctor T : C −→ C with natural
transformations µ : T ◦ T −→ T and η : IdC −→ T such that the
following diagrams commute:

(T (T (T X))) (T (T X))

(T (T X)) T X

TµX

µT X µX

µX

(T (T X))

T X

T X T X

µX

ηT X TηX

idT X idT X

,
29

Monads II

Spelled out, the conditions for an endofunctor T : C −→ C to be a
monad amount to the following equations for all X, Y ∈ OBJC and
f : X −→C Y:

(1) T f ◦C ηX = ηY ◦C f (naturality of η)

(2) T f ◦C µX = µY ◦C T (T f) (naturality of µ)

(3) µX ◦C µT X = µX ◦C T µX (associativity)

(4) µX ◦C ηT X = idT X (left neutrality)

(5) µX ◦C T ηX = idT X (right neutrality)

,
30

TiPES Deliverable D6.1 

 

 

 Page 
200 

 
  

  



Adjunctions

Definition
For categories C andD, functors F : C −→ D,G : D −→ C and
natural transformations η : IdC −→ GF and ε : FG −→ IdD, F and G
are called adjoint functors, if the following two triangles commute
for all X ∈ OBJC, Y ∈ OBJD :

(G (F (G Y)))

G Y

G Y

G εY

ηG Y

idG Y

(F (G (F X)))

F X

F X

F ηX

εFX

idF X

We then say, that 〈F,G, η, ε〉 : C ⇀ D is an adjunction F a G.

,
31

Adjunctions II

Every adjunction 〈F,G, η, ε〉 : C ⇀ D can equivalently be
characterized by a triple 〈F,G, ϕ〉, where ϕ is a bijection

ϕX,Y : HOMD(F X, Y) ∼= HOMC(X,G Y)

which is natural in X ∈ OBJC and Y ∈ OBJD .

We can obtain ϕ and ϕ−1 by defining,
for all f : F X −→D Y and g : X −→C G Y:

ϕ f := G f ◦C ηX and ϕ−1 g := εY ◦D F g

Conversely, we can construct η and ε by defining,
for all X ∈ OBJC, Y ∈ OBJD :

ηX = ϕ idF X and εY = ϕ−1 idG X

,
32
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Adjunctions and (co)monads

Every adjunction 〈F,G, η, ε〉 : C ⇀ D induces a monad
GF = 〈GF, η,GεF〉 on C (and a comonad FG = 〈FG, ε, FηG〉 onD).

We also have: Every monad (and comonad) can canonically be
decomposed into two adjunctions.

The Kleisli decomposition of a monad T into an adjunction involves
a category that is equivalent to the category of free algebras of the
monad. It is the “smallest” (initial) adjunction that induces T.

The Eilenberg-Moore decomposition of a monad T into an
adjunction involves the category of all algebras for this monad. It is
the “largest” (terminal) adjunction that induces T.

,
33

Kleisli categories

Definition
Given a monad T = 〈T, η, µ〉 in a category C, one can form its
Kleisli category CT as follows:

Objects: for every X ∈ OBJC , an object XT

Morphisms: for every f : X −→C T Y, a morphism fT : XT −→CT
YT

Identity: for every object xT ,

idXT
:= (ηX)T : XT −→CT

XT

(i.e. the morphism obtained from ηX : X −→C T X)
Composition: for all fT : YT −→CT

ZT, gT : XT −→CT
YT ,

fT ◦CT
gT := (µX ◦C T f ◦C g)T : XT −→CT

ZT

,
34
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Kleisli adjunction

We can now construct an adjunction 〈FT,GT, ηT, εT〉 : C ⇀ CT .

Definition
Let functors FT : C −→ CT,GT : CT −→ C be defined by,
for all X, Y ∈ OBJC,XT, YT ∈ OBJCT

, f : X −→C Y, fT : XT −→CT
YT :

(FT)O X := XT
(FT)M f := (ηX ◦C f)T

(GT)O XT := T X
(GT)M fT := (µX ◦C T f)T

Define moreover ηT := η and
(εT)XT := (idTX)T : FT GT XT −→CT

XT for all XT ∈ OBJCT
.

The monad GTFT induced by this adjunction is again T.

,
35

Eilenberg-Moore categories

Definition
Given a monad T = 〈T, η, µ〉 in a category C, one can form its
Eilenberg-Moore category CT (= category of T-algebras) as follows:

Objects: T-algebras 〈X, h〉 with X ∈ OBJC and h : T X −→C X, s.t.

h ◦C µX = h ◦C T h and h ◦C ηx = idX

Morphisms: f : 〈X, h〉 −→CT 〈Y, k〉 are arrows f : X −→C Y with

f ◦C h = k ◦C T f

Identity: for all X ∈ OBJC , id〈X,h〉 := idX

Composition: for all f : 〈Y, k〉 −→CT 〈Z, l〉, g : 〈X, h〉 −→CT 〈Y, k〉,

f ◦CT g := f ◦C g : 〈X, h〉 −→CT 〈Z, l〉

,
36
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Eilenberg-Moore adjunction

We can now construct an adjunction 〈FT,GT, ηT, εT〉 : C ⇀ CT .

Definition
Let functors FT : C −→ CT,GT : CT −→ C be defined by,
for all X, Y ∈ OBJC, 〈X, h〉, 〈Y, k〉 ∈ OBJCT ,
f : X −→C Y, f : 〈X, h〉 −→CT 〈X, k〉:

(FT)O X := 〈T X, µX〉
(FT)M f := T f

(GT)O 〈X, h〉 := X
(GT)M f := f

Define moreover ηT := η and
εT〈X, h〉 := h : FTGT〈X, h〉 −→CT 〈X, h〉 for all 〈X, h〉 ∈ OBJCT .

The monad GTFT induced by this adjunction is again T.

,
37

Adjunctions: Examples

The most common examples of adjoint functors follow one of
these two “patterns”:

I Free a Forget (typical for algebraic structures)
I Colimit type a Diagonal a Limit type (typical in logic)

Example

The free monoid functor FreeMon : SET −→ MON which maps
every set to the free monoid generated by this set, has a right
adjoint ForgetMon : MON −→ SET which sends every monoid to its
underlying set.
The monad on SET induced by this adjunction is the List-monad.

,
38

TiPES Deliverable D6.1 

 

 

 Page 
204 

 
  

  



Plan

Introduction to basic concepts and terminology

Monads and adjunctions

Example: Deterministic dynamical systems

,
39

A categorical perspective on dynamical systems
Similar to the approach in the regular lectures, one can consider a
deterministic dynamical system as an object of some category (e.g. SET)
which is equipped with an endomorphism – to be thought of as a state
space equipped with a transition function.

Definition
Let C be a category. Then we can construct the following category C� of
C-objects equipped with an endomorphism:

Objects: 〈X, α〉 with X ∈ OBJC and α : X −→C X,

Morphisms: f : 〈X, α〉 −→C� 〈Y, β〉 with f : X −→C Y and

f ◦C α = β ◦C f

Identity: id〈X,α〉 := idX

Composition: for f : 〈Y, β〉 −→C� 〈Z, γ〉, g : 〈X, α〉 −→C� 〈Y, β〉,
f ◦C� g := f ◦C g

,
40
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To wrap up: Some Popular Slogans

(from Lambek/Scott [7]):

“Many objects of interest to mathematicians . . . ”

I “. . . congregate in concrete categories.”

I “. . . are themselves small categories.”

I “. . . may be viewed as functors from small categories to SET”

,
41

References and Conventions

I We are following the textbooks by Lambek and Scott [7] and Mac Lane [8].

I Categorical perspective on deterministic dynamical systems from Lawvere
and Schanuel [9].

I We give both the axiomatic and the hom-based definition of categories and
functors.

I Arrows in specific categories are annotated with the name of the category.

I Arrows which make sense in more than one ambient category are not
annotated.

I We sometimes use λ-notation to write anonymous functions.

I The presentation glosses over foundational and equality issues (for a
discussion see e.g. the introduction of [10]).

,
42
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